• Title/Summary/Keyword: Wind Field

Search Result 1,597, Processing Time 0.031 seconds

A proposed model of the pressure field in a downburst

  • Tang, Z.;Lu, L.Y.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.123-133
    • /
    • 2013
  • Pressure field and velocity profiles in a thunderstorm downburst are significantly different from that of an atmospheric boundary layer wind. A model of the pressure field in a downburst is presented in accordance with the experimental and numerical results. Large eddy simulation method is employed to investigate transient pressure field on impingement ground of a downburst. In addition, velocity profiles of the downburst are studied, and good agreement is achieved between the present results and the data obtained from empirical models.

Nonlinear dynamic performance of long-span cable-stayed bridge under traffic and wind

  • Han, Wanshui;Ma, Lin;Cai, C.S.;Chen, Suren;Wu, Jun
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.249-274
    • /
    • 2015
  • Long-span cable-stayed bridges exhibit some features which are more critical than typical long span bridges such as geometric and aerodynamic nonlinearities, higher probability of the presence of multiple vehicles on the bridge, and more significant influence of wind loads acting on the ultra high pylon and super long cables. A three-dimensional nonlinear fully-coupled analytical model is developed in this study to improve the dynamic performance prediction of long cable-stayed bridges under combined traffic and wind loads. The modified spectral representation method is introduced to simulate the fluctuating wind field of all the components of the whole bridge simultaneously with high accuracy and efficiency. Then, the aerostatic and aerodynamic wind forces acting on the whole bridge including the bridge deck, pylon, cables and even piers are all derived. The cellular automation method is applied to simulate the stochastic traffic flow which can reflect the real traffic properties on the long span bridge such as lane changing, acceleration, or deceleration. The dynamic interaction between vehicles and the bridge depends on both the geometrical and mechanical relationships between the wheels of vehicles and the contact points on the bridge deck. Nonlinear properties such as geometric nonlinearity and aerodynamic nonlinearity are fully considered. The equations of motion of the coupled wind-traffic-bridge system are derived and solved with a nonlinear separate iteration method which can considerably improve the calculation efficiency. A long cable-stayed bridge, Sutong Bridge across the Yangze River in China, is selected as a numerical example to demonstrate the dynamic interaction of the coupled system. The influences of the whole bridge wind field as well as the geometric and aerodynamic nonlinearities on the responses of the wind-traffic-bridge system are discussed.

Numerical Simulations of Local Wind Field at the Naro Space Center by MUKLIMO with Terrain and Surface Effects (지형과 지표효과를 고려한 나로 우주센터의 국지규모 바람장 수치모의)

  • Yoon, Ji-Won;Min, Kyung-Duk
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.784-798
    • /
    • 2004
  • Microscale wind fields were simulated by MUKLIMO at the Naro Space Center, where complicated mountainous terrain and trees exist. In order to test the model's sensitivity with the effects of terrain and trees, experimental simulations were conducted under the various initial conditions. The experiments showed that the effects of trees were more significant on flat surfaces than on mountain cliffs. Based on the results, an actual 10 m level microscale wind field was simulated at the Naro Space Center, which has complicated mountainous terrain. Simulations of wind fields before and after the construction of the launching site were also conducted. It was found that MUKLIMO was of the mesoscale wind fields at the Naro Space Center.

3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE (풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계)

  • Jeong, Jae-Ho;Yoo, Cheol;Lee, Jung-Sang;Kim, Ki-Hyun;Choi, Jae-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF

Numerical studies of unsteady flow field and aerodynamic forces on an oscillating 5:1 rectangular cylinder in a sinusoidal streamwise flow

  • Ma, Ruwei;Zhou, Qiang;Wang, Peiyuan;Yang, Yang;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.91-100
    • /
    • 2022
  • Numerical simulations are conducted to investigate the uniform flow (UF) and sinusoidal streamwise flow (SSF) over an oscillating 5:1 rectangular cylinder with harmonic heaving motion at initial angles of attack of α = 0° and 3° using two-dimensional, unsteady Reynolds-averaged Navier-Stokes (URANS) equations. First, the aerodynamic parameters of a stationary 5:1 rectangular cylinder in UF are compared with the previous experimental and numerical data to validate the capability of the computationally efficient two-dimensional URANS simulations. Then, the unsteady flow field and aerodynamic forces of the oscillating 5:1 rectangular cylinder in SSF are analysed and compared with those in UF to explore the effect of SSF on the rectangular cylinder. Results show that the alternative vortex shedding is disturbed by SSF both at α = 0° and 3°, resulting in a considerable decrease in the vortex-induced force, whereas the unsteady lift component induced by cylinder motion remains almost unchanged in the SSF comparing with that in UF. Notably, the strong buffeting forces are observed at α = 3° and the energy associated with unsteady lift is primarily because of the oscillations of SSF. In addition, the components of unsteady lift induced by the coupling effects of SSF and cylinder motion are discussed in detail.

TIME SERIES ANALYSIS USING GRIDDED WIND-STRESS PRODUCT DERIVED FROM SATELLITE SCATTEROMETER DATA

  • KUTSUWADA KUNIO;MORIMOTO NAOKI
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.52-53
    • /
    • 2005
  • Time series of gridded surface wind and wind-stress vectors over the world ocean have been constructed by satellite scatterometer data. The products are derived from the ERS-l,2 covering 9 years during 1992-2000 and the Sea Winds on board QuikSCAT (Qscat) which has been operating up to the present since June 1999, so they allows us to analyze variabilities with various time scales. In this study, we focus on interannual variability of the wind stress in the mid- and high-latitude region of North Pacific. These are compared with those by numerical weather prediction(NWP) ones (NCEP Reanalysis). We also examine variability in the wind-stress curl field that is an important factor for ocean dynamics and focus its time and spatial characters in the northwestern Pacific around Japan. It is found that the vorticity field in the lower atmosphere tends to increase gradually with time, suggesting the enhancement of the North Pacific subtropical gyre.

  • PDF

Development of 30kw HAWT/VAWT hybrid wind power system (30kw급 수직/수평축 통합형 풍력발전 시스템 개발)

  • Shinn, Chan;Kim, Ji-Ern;Lim, Jong-Youn;Song, Seung-Ho;Rho, Do-Whan;Kim, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.203-206
    • /
    • 2001
  • A 30kw Dual rotor Turbines HAWT/VAWT combined wind turbine system that can drastically enhance the power production capability compared to conventional Single Rotor Turbine HAWT system. The combined system that takes advantage of strong point of both horizontal and vertical Axis wind turbine system developed by a venture firm KOWINTEC of Chonbuk national university. The HAWT/VAWT hybrid system has been successfully field tested and commercial operating since Feb. 12, 2001 in Hae-chang rest park, Bu-an county near the Sae Man-Kum Sea Dike. This paper will briefly describe the field test results performance and a special aerodynamic structure with bevel-planetary gear box of Dual Rotor Wind Turbine system.

  • PDF

Effects of Non-Uniform Inflow on Aerodynamic Behaviour of Horizontal Axis Wind Turbine

  • KIKUYAMA Koji;HASEGAWA Yutaka;KARIKOMI Kai
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.17-22
    • /
    • 2002
  • Non-uniform and unsteady inflow into a Horizontal Axis Wind Turbine (HAWT) brings about an asymmetric flow field on the rotor plane and an unsteady aerodynamic load on the blades. In the present paper effects of yawed inflow and wind shear are analyzed by an inviscid aerodynamic model based on the asymptotic acceleration potential method. In the analysis the rotor blades are represented by spanwise and chordwise pressure distribution composed of analytical first-order asymptotic solutions for the Laplace equation. As the actual wind field experienced by a HAWT is turbulent, the effects of the turbulence are also examined using the Veers' model.

  • PDF

Dual Rotor Wind Turbine System (수직/수평축 통합형 풍력발전 시스템)

  • Shinn, Chan;Kim, Ji-Ern;Song, Seung-Ho;Rho, Do-Hwan;Kim, Dong-Yong;Jung, Sung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.289-292
    • /
    • 2001
  • A Dual rotor turbines HAWT/VAWT combined wind turbine system that can drastically enhance the power production capability compared to conventional Single Rotor Turbine HAWT system. The combined system that takes advantage of strong point of both horizontal and vertical Axis wind turbine system developed by a venture firm : KOWINTEC of Chonbuk National University. The HAWT/VAWT hybrid system has been successfully field tested and commercial operation since Feb. 12, 2001 in Hae-chang rest park, Bu-an county near the Sae Man-Kum Sea Dike. This paper will briefly describe the field test results performance and a special aerodynamic structure with bevel-planetary gear box of Dual Rotor Wind Turbine system.

  • PDF

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.