• Title/Summary/Keyword: Wilting Time

Search Result 44, Processing Time 0.029 seconds

Study on Baled Silage Making of Selected Forage Crop and Pesture Grasses II. Yield performance and nutritieve evaluation of baled silage as affected by stage of growth (주요 사료작물의 곤포 Silage 조제이용에 관한 연구 II. 생육단계별 건물축적형태화 곤포사일리지 조제이용)

  • 김정갑;한민수;김건엽;한정대;강우성;신정남
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.3
    • /
    • pp.198-206
    • /
    • 1995
  • Baled silage making(BS) of selected forage crops was discussed during 1991-1993, to determine the best cutting time of the plants for BS production, BS yields and silage quality. Seven species of forage crops and pasture grasses(rye, barley, spring oat, Italian ryegrass, orchardgrass, alfalfa and grass-legume pasture mixtures) were harvested at different stage of growth from young plant to physiological maturity, and baled in a self constructed square baling chamber. Each bales, measured 90cm length, 60cm width and 50cm height, were wrapped with 0.05mrn thick polyethylene plastic film, and stored in stack silo. Each bales were weighed between 15-20 kg in dry matter basis. The effects of pre wilting and formic acid addition on the silage quality of young plant materials, which contained high water concentration, was also evaluated during the experiment. Rye plant including of barley and spring oat were evaluated as a good materials for baled silage making. Fodder rye produced high quality BS with a value of silage quality point 84(Flieg's point) when the plant harvested at stage of greatest dry matter accumulation by 12.64 tonha. The best quality BS of barley was obtained at stage of hard dough to yellow stage by 11.9 ton/ha dry matter yield and 81 point silage quality. Italian ryegrass and pasture grasses including of orchardgrass, alfalfa and grass-legume pasture mixtures procuced also high quality bale silage by harvesting at stage of late blooming. However pre witting operation and formic acid addition was required for BS production of grass materials because of high water contents. Water contents of Italian ryegrass and other pasture species ranged 18.9%(Italian) to 20.8%(alfalfa). Silage quality point of Italian BS harvested at late blooing was increased from 72 to 88 by 1/2-one day pre wilting and 0.3% formic acid treatment. Silage quality of young plant materials of rye and other forage crops, barley and spring oat were also improved markedly through the pre wilting treatment and formic acid addition.

  • PDF

Resistance of Terpenoids to Various Abiotic Stresses in Chamaecyparis obtusa

  • Min, Ji Yun;Park, Dong Jin;Yong, Seong Hyeon;Yang, Woo Hyeong;Seol, Yuwon;Choi, Eunji;Kim, Hak Gon;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.53 no.3
    • /
    • pp.17-26
    • /
    • 2019
  • Chamaecyparis obtusa is one of the economical conifers planted in Korea due to its good quality timber and wood characteristics. Individuals of C. obtusa containing high terpenes (HT) and low terpenes (LT) were selected for by colorimetric method. The HT of C. obtusa was delayed in wilting against various abiotic stresses compared to the LT plants. The HT group exposed to UV did not significant influence the chlorophyll content, and the chlorophyll value was higher in the HT group than the LT group. Also, chilling treatment (5℃) did not significant influence on the chlorophyll content. However treatment at -4℃ showed relatively low chlorophyll content in the LT group than the HT group. Plants exposure to high temperature was not a difference between the HT and the LT group. However, treatment at 38℃ influenced the chlorophyll content that was increased exposure time-dependently. In salt treatments, chlorophyll in the HT group was lower at high concentrations (300 and 500 mM) of NaCl. However, chlorophyll content increased to slightly in treatment time-dependently, which is 6.7% to 40%. H2O2 treatment has been a negative effect on the chlorophyll content in the HT group. All concentration of H2O2 decreased the chlorophyll content of 5% to 35%. Plants containing high terpenoids were resisted against some abiotic stress such as salt and H2O2. Our results implied that terpenoids could cause various abiotic stress resistance. These results could be utilized for efficient management and biomass production during forest silvicultures.

Appropriate Set Time in Irrigation System by Time Clock in Tomato Perlite Bag Culture (타이머 제어에 의한 토마토 펄라이트 자루재배시 적정 관수시간 도출)

  • Sim, Sang-Youn;Lee, Su-Yeon;Lee, Sang-Woo;Seo, Myeong-Whoon;Lim, Jae-Wook;Kim, Soon-Jae;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.327-334
    • /
    • 2006
  • In tomato perlite bag culture, the available water content was analyzed for several sorts of perlite so that the irrigation safety was investigated and thus the irrigation strategy controlled by time clock was established. The reduction trends of water content in perlite bags were monitored for tomatoes, of which fruits were harvested until the fifth cluster. The amount of daily reduction of water in the bag was on the decrease as the total water in the bag was decreased. In terms of time interval from when the water content based on weight was reduced more than 50g to when it was dropped again, the longest time interval in a day was retarded gradually. It means plant activity was recovered later than the previous day. The available water content in perlite bag of 40 liters was about 30% which was 12 kg in weight, which satisfied daily water demand of 6 tomato plants. The appropriate time irrigated by time clock was recommended for the case that it was irrigated 5 or 10 times a day with the daily integrated solar radiation of 601 or $1,519W/m^2$.

Yield Loss of Spring Chinese Cabbage as Affected by Infection Time of Clubroot Disease in Fields (봄배추 무사마귀병의 포장 감염시기와 피해)

  • 김충회;조원대;김홍모
    • Research in Plant Disease
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2000
  • Effects of infection time of the clubroot pathogen, Plasmodiophora brassicae, on yield loss of Spring-sown Chinese cabbage plants were examined in field experiments. Yield loss of Chinese cabbage plants increased as the infection time becomes early. Plants infected at 20 days after transplanting or earlier were completely killed before harvest, and those infected at 30 days after transplanting were healthy in appearance but their head weights were reduced to 59% with poor commodity value. The plants infected 40 days after transplanting were not affected in yield. Development of root hairs in diseased plants was greatly reduced as the infection progressed, and root length was reduced to 1/2 to 1/3 of that of healthy plants. root galls were first developed 20 days after inoculation and rapidly enlarged to reach the peak in size 20 days from initial development, and decayed thereafter. Development and decay of root galls tended to be faster at later season as air temperature became high, regardless of the infection time. Diseased plants started to wilt approximately 10 days after root gall development. Root galls began to decay 10 days after initial plant wilting, and then were completely rotten within following 10 days. Based on the results, root gall development stages on spring-sown Chinese cabbage plants could be grouped into 20 days of root gall enlargement period, and 10 days of root gall decay period, followed by survival period in soil.

  • PDF

Reduced Bacterial Wilt in Tomato Plants by Bactericidal Peroxyacetic Acid Mixture Treatment

  • Hong, Jeum Kyu;Jang, Su Jeong;Lee, Young Hee;Jo, Yeon Sook;Yun, Jae Gill;Jo, Hyesu;Park, Chang-Jin;Kim, Hyo Joong
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.78-84
    • /
    • 2018
  • Peroxyacetic acid mixture Perosan, composed of peroxyacetic acid, hydrogen peroxide and acetic acid, was evaluated for eco-friendly management of tomato bacterial wilt by Ralstonia pseudosolanacearum. Perosan drastically suppressed in vitro growth of R. pseudosolanacearum in liquid cultures in dose- and incubation time-dependent manners. Higher perosan doses (0.1 and 1%) caused lowered pH and phytotoxicity to detached leaves of two tomato cultivars Cupirang and Benekia 220 in aqueous solution. Treatment with 0.01% of Perosan delayed wilting symptom significantly in the detached leaves of two cultivars inoculated with R. pseudosolanacearum ($10^7cfu/ml$). Soil drenching of 5% Perosan solution in pots caused severe tissue collapse of tomato seedlings at the four-week-old stage of two tomato cultivars. Treatment with 1% Perosan by soil-drenching significantly reduced bacterial wilt in the tomato seedlings of two cultivars. These findings suggest that Perosan treatment can be applied to suppress bacterial wilt during tomato production.

Effects Water Stress on Physiological Traits at Various Growth Stages of Rice

  • Choi, Weon-Young;Park, Hong-Kyu;Kang, Si-Yong;Kim, Sang-Su;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.282-287
    • /
    • 1999
  • The object of this study was to determine the difference of the time course changes of transpiration, diffusion resistance and photosynthetic rate of rice at several different growth stages subjected to soil moisture stress (SMS) and recovery by irrigation. A japonica rice cultivar 'Dongjinbyeo', was grown under flooded condition in a plastic container filled with silty loam soil. At 5 main growth stages, the container was treated by SMS until initial wilting point (IWP) and then reirrigated. The duration of SMS until IWP were the longest, 13 days for tillering stage, and the shortest, 7 days for panicle initiation and meiosis stage. The transpiration rate rapidly decreased during SMS and the transpiration rate at IWP of the stressed plant showed 10∼20% compared with control, and the transpiration rate of stressed plant at most growth stages also recovered rapidly after irrigation and then reached 100% of control within a week. The shoot photosynthetic rate in all growth stages rapidly decreased by SMS, and the rates at IWP of stressed plants were de-creased nearly to 0%, beside the treatment at tillering stage. The recovery degree of photosynthetic rate by irrigation ranged from 20 to 90%, showed higher at early growth stages of SMS treatment than that of later stages. At all growth stages the leaf diffusion resistance of stressed plants was over 3 times that of the control resulting from a rapid increase at 3 to 5 days after draining for SMS, and showed quick recovery by irrigation within 3 days after drainage. The above physiological parameters changed in close relation with the decrease of the soil matric potential after SMS. These results indicate that at all main growth stages of rice plants the transpiration and photosynthesis reduction by stomatal closure reponded sensitively to the first stage of SMS closely related with decrease of soil water potential, while those recovery pattern and recovered degree by irrigation are little different by growth stage of rice.

  • PDF

Root Rot of Balloon Flower (Platycodon grandiflorum) Caused by Fusarium solani and Fusarium oxysporum

  • Jeon, Chi Sung;Kim, Gyoung Hee;Son, Kyeong In;Hur, Jae-Seoun;Jeon, Kwon-Seok;Yoon, Jun-Hyuck;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.440-445
    • /
    • 2013
  • Balloon flower (Platycodon grandiflorum) is a kind of mountain herbs whose roots have restorative properties and the cultivating acreage of balloon flower has been steadily increasing in Korea. More frequent rain and high amount of rainfalls as a result of climate changes predisposed balloon flower to the outbreaks of root rot at high-density cultivation area in recent years. Root crowns were usually discolored into brown to blackish brown at first and the infected plants showed slight wilting symptom at early infection stage. Severely infected roots were entirely rotted and whole plants eventually died at late infection stage. The overall disease severities of root rot of balloon flower were quite variable according to the surveyed fields in Jeonnam, Gyeongnam and Jeju Provinces, which ranged from 0.1% to 40%. The root rot occurred more severely at the paddy or clay soils than the sandy soils and their severities were much higher at lowland than upland in the same localty. The disease increased with aging of the balloon flower. The causal fungi were identified as Fusarium solani and F. oxysporum on the basis of their mycological characteristics. The optimum temperature ranges of their mycelial growths was found to be $24^{\circ}C$. The pathogenic characters of F. solani and F. oxysporum treated by artificial wounding inoculation on healthy roots of balloon flower revealed that F. solani was more virulent than F. oxysporum. This study identified the causal agents of root rot of balloon flower as Fusarium solani and F. oxysporum, probably for the first time.

EFFECTS OF UREA NITROGEN ON THE METABOLISM OF PLANTS (1) Studies on Nitrogen Absorption and Metabolism in Sunflower Leavessprayed with Urea Solution

  • KIM, Joon Ho
    • Journal of Plant Biology
    • /
    • v.4 no.2
    • /
    • pp.51-61
    • /
    • 1961
  • In order to detect the way of absorption and metaboism of the urea it is sprayed on the surface of the leaves of sunflower. The sunflowers used in this study are grown in different conditions such that the one in nittogen aboundant and the other in nitrogen deficient soil, respectively. The urea-N, ammonia-N, amide-N, and 80% alcohol soluble-N in the leaves were quantitatively determined. All of the nitrogenous components measured are generally tended to increased with rising the concentration of urea except only amide-N at 24 hours after sprayed, and these were highly significances. It seemed that hydrolizing of urea into ammonia and carbon dixide and the assimilation of ammonia into other organic nitrogenous constituents were rapid in the young leaves than in the mature. It is interest that the amide content, in the young leaves and nitrogen defieient one were enhanced with the increasing concentration of urea, although in the mature leaves it did not show any change in the urea treatment. It is presumed that the assimilation rate of ammonia and the urease activity were lower in the matture leaves than in the young and nitrogen deficient leaves. No significance at 5% level showed all of the nitrogenous components except total nitrogen between nitrogen abundant and deficent leaves. Urea content was a high peak at first 12 hours, ammonia at 48 hours, and amide and alcohol soluble nitrogen at 96 hours, whence decrease4d the content of these constituents gradually. The total nitrogen content is not incrased obviously by only one time of urea spray in this study. When the concentration of urea was relatively high there appeared the wilting spots on t도 edge of leaves. As a whole, it seemed that sprayed urea was rapidly absorbed and taken part in nitrogen metabolism within relatively short period.

  • PDF

RNN-LSTM Based Soil Moisture Estimation Using Terra MODIS NDVI and LST (Terra MODIS NDVI 및 LST 자료와 RNN-LSTM을 활용한 토양수분 산정)

  • Jang, Wonjin;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.123-132
    • /
    • 2019
  • This study is to estimate the spatial soil moisture using Terra MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data and machine learning technique. Using the 3 years (2015~2017) data of MODIS 16 days composite NDVI (Normalized Difference Vegetation Index) and daily Land Surface Temperature (LST), ground measured precipitation and sunshine hour of KMA (Korea Meteorological Administration), the RDA (Rural Development Administration) 10 cm~30 cm average TDR (Time Domain Reflectometry) measured soil moisture at 78 locations was tested. For daily analysis, the missing values of MODIS LST by clouds were interpolated by conditional merging method using KMA surface temperature observation data, and the 16 days NDVI was linearly interpolated to 1 day interval. By applying the RNN-LSTM (Recurrent Neural Network-Long Short Term Memory) artificial neural network model, 70% of the total period was trained and the rest 30% period was verified. The results showed that the coefficient of determination ($R^2$), Root Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency were 0.78, 2.76%, and 0.75 respectively. In average, the clay soil moisture was estimated well comparing with the other soil types of silt, loam, and sand. This is because the clay has the intrinsic physical property for having narrow range of soil moisture variation between field capacity and wilting point.

Transgenic cucumber expressing the 54-kDa gene of Cucumber fruit mottle mosaic virus is highly resistance and protect non-transgenic scions from soil infection

  • Gal-On, A.;Wolf, D.;Antignus, Y.;Patlis, L.;Ryu, K.H.;Min, B.E.;Pearlsman, M.;Lachman, O.;Gaba, V.;Wang, Y.;Yang. J.;Zelcer, A.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.148.2-149
    • /
    • 2003
  • Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms with yellow mottling on leaves and fruits, and occasionally severe wilting of cucumber plants. No genetic source of resistance against this virus has been identified. The genes coding for the coat protein or the putative 54-kDa replicase were cloned into binary vectors under control of the SVBV promoter. Agrobacterium-mediated transformation was peformed on cotyledon explants of a parthenocarpic cucumber cultivar with superior competence for transformation. R1 seedlings were evaluated for resistance to CFMMV infection by lack of symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, 8 exhibited immunity, while only 3 resistant lines were found among a total of 9 CP-containing lines. Line 144 homozygous for the 54-kDa replicase was selected for further resistance analysis. Line 144 was immune to CFMMV infection by mechanical and graft inoculation, or by root infection following planting in CFMMV-contaminated soil. Additionally, line 144 showed delay of symptom appearance following infection by other cucurbit-infecting tobamoviruses. Infection of line 144 plants with various potyviruses and cucumber mosaic cucumovirus did not break the resistance to CFMMV. The mechanism of resistance of line 144 appears to be RNA-mediated, however the means is apparently different from the gene silencing phenomenon. Homozygote line 144 cucumber as rootstock demonstrated for the first time protection of a non-transformed scion from soil inoculation with a soil borne pathogen, CFMMV.

  • PDF