• Title/Summary/Keyword: Wilt symptoms

Search Result 95, Processing Time 0.029 seconds

Occurrence of Sclerotium Rot of Cucumber Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 오이 흰비단병 발생)

  • Kwon, Jin-Hyeuk;Lee, Sang-Dae;Choi, Okryun;Shen, Shun-Shan;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.229-232
    • /
    • 2013
  • Sclerotium rot of cucumber (Cucumis sativus L.) occurred at the experimental field of Gyeongsangnam-do Agricultural Research and Extension Services in July 2012. The typical symptoms included wilt, rot, and water-soaking on stems and fruits and severely infected plants eventually died. White mycelial mats spread over lesions, and then sclerotia were formed on fruit and near soil line. The sclerotia were globoid in shape, white to brown in color and 1-3 mm in size and the hyphal width was 4-8 ${\mu}m$. The optimum temperature for mycelial growth and sclerotia formation on PDA was $30^{\circ}C$. The typical clamp connections were observed in the hyphae of the fungus grown on PDA. For further identification, the complete internal transcribed spacer (ITS) rDNA region was amplified and sequenced. On the basis of mycological characteristics, ITS rDNA region comparison, and pathogenicity to host plants, this fungus was identified as Sclerotium rolfsii Saccardo. This is the first report of sclerotium rot on cucumber caused by S. rolfsii in Korea.

Sclerotinia Rot on Basil Caused by Sclerotinia sclerotiorum in Korea (Sclerotinia sclerotiorum에 의한 바질 균핵병)

  • Hahm, Soo Sang;Kim, Byoung Ryun;Han, Kwang Seop;Kwon, Mi Kyung;Park, In Hee
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.56-59
    • /
    • 2017
  • During growing season of 2011 to 2013, Sclerotinia rot symptoms consistently have been observed on basil in Yesan-gun, Chungcheongnam-do in Korea. The typical symptom formed initially brownish spot on leaf and stem, and then advancing margins, wilting the whole plant and blighting, eventually died. On the surface of diseased lesions was observed cottony, white, dense mat of mycelial growth, and sclerotia ($30-100{\mu}m$ diameter) formed on stem and leaf. Morphological and cultural characteristic on potato dextrose agar, color of colony was white and colorless chocolate, sclerotium of irregular shape of the oval was black and $5-50{\mu}m$ diameter in size. In pathogenicity test, necrosis and wilt of the inoculated stem were observed in all plants and the pathogen was reisolated from stems. On the basis of mycological characteristics, pathogenicity, and internal transcribed spacer rDNA sequence analysis, this fungus was identified as Sclerotinia sclerotiorum. This is the first report of Sclerotinia rot on basil caused by S. sclerotiorum in Korea.

Suppression of Rhizome Rot in Organically Cultivated Ginger Using Integrated Pest Management (종합적 방제기술을 이용한 유기재배 생강의 근경썩음병 억제)

  • Shim, Chang-Ki;Kim, Min-Jeong;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Kim, Suk-Chul
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.215-221
    • /
    • 2015
  • This study was conducted to control ginger rhizome rot treated with the combined treatment, the hairy vetch, carbonized rice husk and eggshell calcium in organic ginger farm. Early symptoms of leaf yellowing and plant wilt began in the chemical fertilizer treatment on July 1. Ginger rhizome rot was more progressed on October 2, and stem browning and dead plant showed a high disease incidence with from 36.7% to 43.0%. On the other hand, the combined treatment did not occur at all until July 1 and delayed the disease incidence to October 2. It showed a low disease incidence of 1.3% to 1.7%. In the combined treatment, the content of soil Na, Fe, Cu was decreased and organic matter was increased twice with 31.6% than previous. Population density of Pythium sp. is lower in the combined treatment ($0.3-2.0{\times}10^3cfu/g$ than the chemical fertilizer treatments ($12.0-12.3{\times}10^3cfu/g$). The combined treatment, hairy vetch, carbonized rice husk and the eggshell calcium is able to control the ginger rhizome rot in organically cultivated ginger field.

Differences in isolates of Tomato yellow leaf curl virus in tomato fields located in Daejeon and Chungcheongnam-do between 2017 and 2018

  • Oh, June-Pyo;Choi, Go-Woon;Kim, Jungkyu;Oh, Min-Hee;Kim, Kang-Hee;Park, Jongseok;Domier, Leslie L.;Hammond, John;Lim, Hyoun-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.507-517
    • /
    • 2019
  • To follow up on a 2017 survey of tomato virus diseases, samples with virus-like symptoms were collected from the same areas (Buyeo-gun, Chungchungnam-Do and Daejeon, Korea) in 2018. While in 2017 mixed infections of Tomato mosaic virus with either Tomato yellow leaf curl virus (TYLCV) or Tomato chlorosis virus were detected, only TYLCV was detected in symptomatic samples in 2018. TYLCV amplicons of c.777 bp representing the coat protein (CP) coding region were cloned from the TYLCV positive samples, and the sequence data showed a 97.17% to 98.84% nucleotide and 98.45% to 99.22% amino acid identity with the 2017 Buyeo-gun isolate (MG787542), which had the highest amino acid (aa) sequence identity of up to 99.2% with four 2018 Buyeo-gun sequences (MK521830, MK521833, MK521834, and MK521835). The lowest aa sequence identity of 98.45% was found in a 2018 Daejeon isolate (MK521836); the distance between Buyeo-gun and Daejeon is about 45 km. Phylogenetic analysis indicated that the currently reported CP sequences are most closely related to Korean sequences from Masan (HM130912), Goseong (JN680149), Busan (GQ141873), Boseong (GU325634), and the 2017 isolate TYLCV-N (MG787543) in the 'Japan' cluster of TYLCV isolates and distinct from the 'China' cluster isolates from Nonsan (GU325632), Jeonju (HM130913) and Jeju (GU325633, HM130914). Our survey data from 2017 and 2018 suggest that TYLCV has become established in Korea and may be spread by whitefly vectors from weed reservoirs within the farm environment.

Cause of the Scion Death in Green Pepper Grafting System by a Tobamovirus (풋고추 접목시스템에서 Tobamovirus 감염에 의한 접수 고사)

  • Choi, Gug-Seoun;Cho, Jeom-Deog;Chung, Bong-Nam;Cho, In-Sook;Choi, Sung-Kook
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.191-195
    • /
    • 2011
  • This experiment was attempted to investigate a cause of the scion death in green pepper grafting system. A tobamovirus particle examined in the rootstock of the sample but not in the scion showing necrosis. The virus isolated from the rootstock was identified as Pepper mild mottle virus (PMMoV), pepper tobamovirus pathotype P1.2. (PMMoV-2), by nucleotide sequence analysis and host plant reaction. The virus isolate infected systematically in 6 commercial rootstock varieties using for green pepper grafting seedling production. Green pepper varieties 'Long green mart' and 'Daechan' represented resistance to the virus showing local lesions only on the inoculated leaves and 'Manitda' was systematically infected. In the experiment with grafting 'Long green mart' or 'Daechan' onto the those rootstocks, the upper leaves of the scions first showed vein necrosis and wilt symptoms 7 days after inoculation with PMMoV-2 on the cotyledon of the rootstock, following to the scion stem necrosis and then only the scion death. The virus was detected in the rootstock but not in the scion. However, 'Manitda' of susceptible variety in the grafting system showed mottle symptom on the leaves of the scion but not necrosis on the plant. PMMoV-3 isolate, pepper tobamovirus pathotype P1.2.3, did not cause the scion death in the grafting system. All of the varieties were susceptible to PMMoV-3. These results suggest that the scion death is caused by infecting with pepper tobamovirus pathotype P1.2. in the green pepper grafting system combined with the susceptible rootstock and the resistance scion to the virus pathotype.