• Title/Summary/Keyword: Wilson-Hilferty Approximation

Search Result 3, Processing Time 0.017 seconds

Comparison of Rigorous Design Procedure with Approximate Design Procedure for Variable Sampling Plans Indexed by Quality Loss

  • Ishii, Yoma;Arizono, Ikuo;Tomohiro, Ryosuke;Takemoto, Yasuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.231-238
    • /
    • 2016
  • Traditional acceptance sampling plans have focused on the proportion of nonconforming items as an attribute criterion for quality. In today's modern quality management under high quality production environments, the reduction of the deviation from a target value in a quality characteristic has become the most important purpose. In consequence, various inspection plans for the purpose of reducing the deviation from the target value in the quality characteristic have been investigated. In this case, a concept of the quality loss evaluated by the deviation from the target value has been accepted as the variable evaluation criterion of quality. Further, some quality measures based on the quality loss have been devised; e.g. the process loss and the process capability index. Then, as one of inspection plans based on the quality loss, the rigorous design procedure for the variable sampling plan having desired operating characteristics (VS-OC plan) indexed by the quality loss has been proposed by Yen and Chang in 2009. By the way, since the estimator of the quality loss obeys the non-central chi-square distribution, the rigorous design procedure for the VS-OC plan indexed by the quality loss is complicated. In particular, the rigorous design procedure for the VS-OC plan requires a large number of the repetitive and complicated numerical calculation about the non-central chi-square distribution. On the other hand, an approximate design procedure for the VS-OC plan has been proposed before the proposal of the above rigorous design procedure. The approximate design procedure for the VS-OC plan has been constructed by combining Patnaik approximation relating the non-central chi-square distribution to the central chi-square distribution and Wilson-Hilferty approximation relating the central chi-square distribution to the standard normal distribution. Then, the approximate design procedure has been devised as a convenient procedure without complicated and repetitive numerical calculations. In this study, through some comparisons between the rigorous and approximate design procedures, the applicability of the approximate design procedure has been confirmed.

Omnibus tests for multivariate normality based on Mardia's skewness and kurtosis using normalizing transformation

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.501-510
    • /
    • 2020
  • Mardia (Biometrika, 57, 519-530, 1970) defined measures of multivariate skewness and kurtosis. Based on these measures, omnibus test statistics of multivariate normality are proposed using normalizing transformations. The transformations we consider are normal approximation and a Wilson-Hilferty transformation. The normalizing transformation proposed by Enomoto et al. (Communications in Statistics-Simulation and Computation, 49, 684-698, 2019) for the Mardia's kurtosis is also considered. A comparison of power is conducted by a simulation study. As a result, sum of squares of the normal approximation to the Mardia's skewness and the Enomoto's normalizing transformation to the Mardia's kurtosis seems to have relatively good power over the alternatives that are considered.