• 제목/요약/키워드: Williamson-Hall

검색결과 7건 처리시간 0.018초

Synthesis and Comparative Analysis of Crystallite Size and Lattice Strain of Pb2Ba1.7Sr0.3Ca2Cu3O10+δ Superconductor

  • Hasan, Maher Abd Ali;Jasim, Kareem Ali;Miran, Hussein Ali Jan
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.66-71
    • /
    • 2022
  • In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), size-strain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.4540774, 86.658638, 87.7555823 and 85.470086 Å, respectively. Moreover, the lattice strain values obtained by W.H, SSP and H.W methods were 0.0063240, 0.006325 and 0.006, respectively. It was noted that all crystallite size results are consistent; however, the best method is the size-strain plot because it gave a value of R2 approaching one. Furthermore, degree of crystallites was calculated and found to be 59.003321%. Resistivity analysis suggests zero-resistance, which is typical of superconducting materials at critical temperature. Four-probe technique was utilized to measure the critical temperature at onset Tc(onset), zero resistivity Tc(off set), and transition (width ΔT), corresponding to temperatures of 128 K, 116 K, and 12 K, respectively.

Partial Substitution of Copper with Nickel for the Superconducting Bismuth Compound and Its Effect on the Physical and Electrical Properties

  • Kareem Ali Jasim;Riyam Abd Al-Zahra Fadil;Kassim Mahdi Wadi;Auday Hattem Shaban
    • 한국재료학회지
    • /
    • 제33권9호
    • /
    • pp.360-366
    • /
    • 2023
  • This study focuses on how the partial substitution of copper by nickel nanoparticles affects the electrical and structural properties of the Bi2Ba2Ca2Cu2.9Ni0.1O10+δ, Bi2Ba2Ca2Cu2.8Ni0.2O10+δ and Bi2Ba2Ca2Cu2.6Ni0.4O10+δ compounds. Approximate values of crystallization size and crystallization percentage for the three compounds were calculated using the Scherer, modified Scherer, and Williamson-Hall methods. A great similarity was observed in the crystal size values from the Scherer method, 243.442 nm, and the Williamson-Hall method, 243.794 nm for the second sample. At the same time this sample exhibited the highest crystal size value for the three methods. In the examination of electrical properties, the sample with 0.1 partial substitution, Bi2Ba2Ca2Cu2.9Ni0.1O10+δ was determined to be the best with a critical temperature of 100 K and an energy gap of 6.57639 × 10-21 MeV. Using the SEM technique to analyze the structural morphology of the three phases, it was discovered that the size of the granular forms exceeds 25 nm. It was determined that the samples' shapes alter when nickel concentration rises. The patterns that reveal the distribution of the crystal structure also exhibit clear homogeneity.

기계적 합금법에 의한 $BaO_2-TiO_2$ :$Eu^{3+}$ 분말의 합성 (Formation of $Eu^{3+}$ - doped $BaO_2-TiO_2$ Powders Produced by Mechanical Alloying)

  • 김현구
    • 통합자연과학논문집
    • /
    • 제1권2호
    • /
    • pp.84-88
    • /
    • 2008
  • The formation and thermal properties of the $BaO_2$ and $TiO_2$ mixtures were prepared by mechanical alloying method was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and thermogravimetric/differential thermal analysis (TG/DTA). The rotating speed of 750 rpm shows more effects on the formation of $BaTiO_3$ single phase. The internal strain calculated using Williamson-Hall method was $4.27{\times}10^{-3}$ for the mixture milled for 300 min, the crystallite size was calculated using the Scherrer method decreased with milling time. The $BaTiO_3$ crystal improved crystallinity was formed by thermal annealing at a temperature of $600^{\circ}C$ for 1 h for the mixture milled for 300 min.

  • PDF

기계적 합금화 방법에 의한 금속-카본계에서의 나노복합금속분말의 제조 (Preparation of Nanocomposite Metal Powders in Metal-Carbon System by Mechanical Alloying Process)

  • 김현승;이광민
    • 한국재료학회지
    • /
    • 제8권4호
    • /
    • pp.328-336
    • /
    • 1998
  • 본 연구에서는 기지금속과의 고상이나 액상의 고용한이 거의 없는 금속-카본(carbon)계에서 고에너지 볼밀공정을 이용하여 고체 윤활 청동베어링용 Cu-C-X계 나노복합금속분말을 제조하고자 하였다. Cu-10wt.%C-5wt.%AI과 Cu-10wt.%C-5wt.%Fe의 혼합분말을 이르곤 분위기의 attritor내에서 기계적 합금화한 후 Cu-C-X의 나노복합금속분말의 미세조직 특성을 조사하였다. AI, Fe를 첨가하였을 때 10시간 이상의 MA공정에서부터 약 $10\mu\textrm{m}$이하의 미세한 Cu-C-X나노복합금속분말을 얻을 수 있었으며, MA 시간에 따른 분말의 형상과 미세구조 변화는 금속-금속계의 MA 과정과 유사하게 진행되는 것을 알 수 있었다. Cu-C-X 나노복합금속분말의 X-선 회절시험 결과, MA 시간에 따라 Cu와 C분말의 회절피크의 폭은 넓어지고 회절강도는 감소하였으며, 특히 흑연피크의 MA시간에 따른 소멸은 흑연의 낮은 원자산란계수 때문에 의한 X-선 흡수 영향으로 고찰하였다. Williamson-Hall식으로 계산된 Cu-C-X 나노복합금속분말내의 Cu의 결정립은 15시간 이상의 MA공정에서부터 약 10nm이하의 크기를 가졌으며, TEM 분석결과로는 불규칙한 형상의 약 10-30nm 크기로 복합화된 Cu결정립을 확인할 수 있었다.

  • PDF

Structural and electrical properties of perovskite Ba(Sm1/2Nb1/2)O3-BaTiO3 ceramic

  • Nath, K. Amar;Prasad, K.
    • Advances in materials Research
    • /
    • 제1권2호
    • /
    • pp.115-128
    • /
    • 2012
  • The structural and electrical properties of $(1-x)Ba(Sm_{1/2}Nb_{1/2})O_3-xBaTiO_3$; ($0{\leq}x{\leq}1$) ceramics were prepared by conventional ceramic technique at $1375^{\circ}C$/7 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were derived from the X-ray diffraction (XRD) data using FullProf software whereas crystallite size and lattice strain were estimated from Williamson-Hall approach. XRD analysis of the compound indicated the formation of a single-phase cubic structure with the space group Pm m. Dielectric study revealed that the compound $0.75Ba(Sm_{1/2}Nb_{1/2})O_3-0.25BaTiO_3$ is having low and ${\varepsilon}^{\prime}$ and ${\varepsilon}^{{\prime}{\prime}}$ a low $T_{CC}$ (< 5%) in the working temperature range (up to+$100^{\circ}C$) which makes this composition suitable for capacitor application and may be designated as 'Stable Low-K' Class I material as per the specifications of the Electronic Industries Association. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in the system. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compounds.

Hydrogen Storage Properties of Hydriding-Dehydriding Cycled Magnesium-Nickel-Iron Oxide Alloy

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung;Kim, Byoung-Goan
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.171-175
    • /
    • 2012
  • By measuring the absorbed hydrogen quantity as a function of the number of cycles, the cycling properties of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy were investigated. The absorbed hydrogen quantity decreased as the number of cycles increased. The $H_a$ value varied almost linearly with the number of cycles. The maintainability of absorbed hydrogen quantity at n=100 was 89.0% for the hydriding reaction time of 10 min. After the $150^{th}$ hydriding-dehydriding cycle, Mg, $Mg_2Ni$, $Mg(OH)_2$, MgO, and Fe were observed. The phases were analyzed by Rietveld analysis from the XRD patterns of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy after 150 hydriding-dehydriding cycles. The crystallite size and strain of Mg were then estimated with the Williamson-Hall technique.

Effect of Basal-plane Stacking Faults on X-ray Diffraction of Non-polar (1120) a-plane GaN Films Grown on (1102) r-plane Sapphire Substrates

  • Kim, Ji Hoon;Hwang, Sung-Min;Baik, Kwang Hyeon;Park, Jung Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.557-565
    • /
    • 2014
  • We report the effect of basal-plane stacking faults (BSFs) on X-ray diffraction (XRD) of non-polar (11$\underline{2}$0) a-plane GaN films with different $SiN_x$ interlayers. Complete $SiN_x$ coverage and increased three-dimensional (3D) to two-dimensional (2D) transition stages substantially reduce BSF density. It was revealed that the Si-doping profile in the Si-doped GaN layer was unaffected by the introduction of a $SiN_x$ interlayer. The smallest in-plane anisotropy of the (11$\underline{2}$0) XRD ${\omega}$-scan widths was found in the sample with multiple $SiN_x$ layers, and this finding can be attributed to the relatively isotropic GaN mosaic resulting from the increase in the 3D-2D growth step. Williamson-Hall (WH) analysis of the (h0$\underline{h}$0) series of diffractions was employed to determine the c-axis lateral coherence length (LCL) and to estimate the mosaic tilt. The c-axis LCLs obtained from WH analyses of the present study's representative a-plane GaN samples were well correlated with the BSF-related results from both the off-axis XRD ${\omega}$-scan and transmission electron microscopy (TEM). Based on WH and TEM analyses, the trends in BSF densities were very similar, even though the BSF densities extracted from LCLs indicated that the values were reduced by a factor of about twenty.