Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.2.66

Synthesis and Comparative Analysis of Crystallite Size and Lattice Strain of Pb2Ba1.7Sr0.3Ca2Cu3O10+δ Superconductor  

Hasan, Maher Abd Ali (Ministry of Education, Tikrit Directorate of Education)
Jasim, Kareem Ali (University of Baghdad Collage of Education for Pure Sciences Ibn Al-Haitham, Department of Physics)
Miran, Hussein Ali Jan (University of Baghdad Collage of Education for Pure Sciences Ibn Al-Haitham, Department of Physics)
Publication Information
Korean Journal of Materials Research / v.32, no.2, 2022 , pp. 66-71 More about this Journal
Abstract
In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), size-strain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.4540774, 86.658638, 87.7555823 and 85.470086 Å, respectively. Moreover, the lattice strain values obtained by W.H, SSP and H.W methods were 0.0063240, 0.006325 and 0.006, respectively. It was noted that all crystallite size results are consistent; however, the best method is the size-strain plot because it gave a value of R2 approaching one. Furthermore, degree of crystallites was calculated and found to be 59.003321%. Resistivity analysis suggests zero-resistance, which is typical of superconducting materials at critical temperature. Four-probe technique was utilized to measure the critical temperature at onset Tc(onset), zero resistivity Tc(off set), and transition (width ΔT), corresponding to temperatures of 128 K, 116 K, and 12 K, respectively.
Keywords
high temperature superconductor; Scherrer; Williamson-Hall; size-strain plot; Halder Wagner method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Rojek, K. Fischer, S. Thierfeldt, R. R. Arons and W. Zinn, Solid State Commun., 72, 113 (1989).   DOI
2 Z. Z. Sheng, W. Kiehl, J. Bennett, A. E. Ali, D. Marsh, G. D. Mooney, F. Arammash, J. Smith, D. Viar and A. M. Hermann, Appl. Phys. Lett., 52, 1738 (1988).   DOI
3 J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev., 108, 1175 (1957).   DOI
4 C.-J. Kim, Superconductor Levitation, p.213, Springer, Singapore (2019).
5 C. Yao and Y. Ma, iScience, 24, 102541 (2021).   DOI
6 J. G. Bednorz and K. A. Muller, Zeitschrift fur Phys. B Condens. Matter, 64, 189 (1986).   DOI
7 L. A. Mohammed and K. A. Jasim, Ibn AL- Haitham J. Pure Appl. Sci., 31, 26 (2018).   DOI
8 R. S. Al-Khafaji and K. A. Jasim, AIMS Mater. Sci., 8, 550 (2021).   DOI
9 M. K. Kamil and K. A. Jasim, IOP Conf. Ser. Mater. Sci. Eng., 928, 072109 (2020).   DOI
10 K. A. Jassim and T. J. Alwan, J. Supercond. Novel Magn., 22, 861 (2009).   DOI
11 G. Y. Hermiz, B. A. Aljurani and H. A. Thabit, Baghdad. Sci. J., 11, 713 (2014).   DOI
12 K. Momma and F. J. Izumi, J. Appl. Crystallogr., 44, 1272 (2011).   DOI
13 W. P. Davey, Phys. Rev., 25, 753 (1925).   DOI
14 K. A. Jasim and T. J. Alwan, J. Supercond. Nov. Magn., 30, 3451 (2017).   DOI
15 P. M. Woodward and P. Karen, Inorg. Chem., 42, 1121 (2003).   DOI
16 M. K. Kamil and K. A. Jasim, IOP Conf. Ser. Mater. Sci. Eng., 928, 072109 (2020).   DOI
17 Y. Rosenberg, V. S. Machavariani, A. Voronel1, S. Garber, A. Rubshtein, A. I. Frenkel, and E. A. Stern, J. Phys.: Condens. Matter, 12, 8081 (2000).   DOI
18 L. A. Mohammed and K. A. Jasim, J. Phys.: Conf. Ser., 1879, 032069 (2021).   DOI
19 K. A. Jasim, J. Supercond. Novel Magn., 25, 1713 (2012).   DOI
20 K. A. Jassim, Turkish J. Phys., 36, 245 (2012).
21 C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Meng and Y. Y. Xue, Nature, 365, 323 (1993).   DOI
22 M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas and G. Janusas, Nanomaterials, 10, 1 (2020).
23 M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett., 58, 908 (1987).   DOI
24 C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost and B. Raveau, Zeitschrift fur Phys. B Condens. Matter, 68, 421 (1987).   DOI
25 S. Massidda, J. Yu and A. Freeman, Phys. C., 152, 251 (1988).   DOI