• Title/Summary/Keyword: Williamson-Hall

Search Result 7, Processing Time 0.017 seconds

Synthesis and Comparative Analysis of Crystallite Size and Lattice Strain of Pb2Ba1.7Sr0.3Ca2Cu3O10+δ Superconductor

  • Hasan, Maher Abd Ali;Jasim, Kareem Ali;Miran, Hussein Ali Jan
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.66-71
    • /
    • 2022
  • In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), size-strain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.4540774, 86.658638, 87.7555823 and 85.470086 Å, respectively. Moreover, the lattice strain values obtained by W.H, SSP and H.W methods were 0.0063240, 0.006325 and 0.006, respectively. It was noted that all crystallite size results are consistent; however, the best method is the size-strain plot because it gave a value of R2 approaching one. Furthermore, degree of crystallites was calculated and found to be 59.003321%. Resistivity analysis suggests zero-resistance, which is typical of superconducting materials at critical temperature. Four-probe technique was utilized to measure the critical temperature at onset Tc(onset), zero resistivity Tc(off set), and transition (width ΔT), corresponding to temperatures of 128 K, 116 K, and 12 K, respectively.

Partial Substitution of Copper with Nickel for the Superconducting Bismuth Compound and Its Effect on the Physical and Electrical Properties

  • Kareem Ali Jasim;Riyam Abd Al-Zahra Fadil;Kassim Mahdi Wadi;Auday Hattem Shaban
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.360-366
    • /
    • 2023
  • This study focuses on how the partial substitution of copper by nickel nanoparticles affects the electrical and structural properties of the Bi2Ba2Ca2Cu2.9Ni0.1O10+δ, Bi2Ba2Ca2Cu2.8Ni0.2O10+δ and Bi2Ba2Ca2Cu2.6Ni0.4O10+δ compounds. Approximate values of crystallization size and crystallization percentage for the three compounds were calculated using the Scherer, modified Scherer, and Williamson-Hall methods. A great similarity was observed in the crystal size values from the Scherer method, 243.442 nm, and the Williamson-Hall method, 243.794 nm for the second sample. At the same time this sample exhibited the highest crystal size value for the three methods. In the examination of electrical properties, the sample with 0.1 partial substitution, Bi2Ba2Ca2Cu2.9Ni0.1O10+δ was determined to be the best with a critical temperature of 100 K and an energy gap of 6.57639 × 10-21 MeV. Using the SEM technique to analyze the structural morphology of the three phases, it was discovered that the size of the granular forms exceeds 25 nm. It was determined that the samples' shapes alter when nickel concentration rises. The patterns that reveal the distribution of the crystal structure also exhibit clear homogeneity.

Formation of $Eu^{3+}$ - doped $BaO_2-TiO_2$ Powders Produced by Mechanical Alloying (기계적 합금법에 의한 $BaO_2-TiO_2$ :$Eu^{3+}$ 분말의 합성)

  • Kim, Hyun-Goo
    • Journal of Integrative Natural Science
    • /
    • v.1 no.2
    • /
    • pp.84-88
    • /
    • 2008
  • The formation and thermal properties of the $BaO_2$ and $TiO_2$ mixtures were prepared by mechanical alloying method was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and thermogravimetric/differential thermal analysis (TG/DTA). The rotating speed of 750 rpm shows more effects on the formation of $BaTiO_3$ single phase. The internal strain calculated using Williamson-Hall method was $4.27{\times}10^{-3}$ for the mixture milled for 300 min, the crystallite size was calculated using the Scherrer method decreased with milling time. The $BaTiO_3$ crystal improved crystallinity was formed by thermal annealing at a temperature of $600^{\circ}C$ for 1 h for the mixture milled for 300 min.

  • PDF

Preparation of Nanocomposite Metal Powders in Metal-Carbon System by Mechanical Alloying Process (기계적 합금화 방법에 의한 금속-카본계에서의 나노복합금속분말의 제조)

  • Kim, Hyun-Seung;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.328-336
    • /
    • 1998
  • In metal-carbon system with no mutual solubility between matrix and alloying elements as solid or liquid phases, Cu-C-X nanocomposite metal powders were prepared by high energy ball milling for solid-lubricating bronze bearings. Elemental powder mixtures of Cu-lOwt.%C- 5wt. %Fe and Cu- lOwt. %C- 5wt. %Al were mechanically alloyed with an attritor in an argon atmosphere, and then microstructural evolution of the Cu-C-X nanocomposite metal powders was examined. It has been found that after 10 hours of MA, the approximately 10$\mu\textrm{m}$ sized Cu-C- X nanocomposite metal powders can be produced in both compositions. Morphological characteristics and microstructural evolution of the Cu-C-X powders have shown a similar MA procedure compared to those of metal-metal system. As a result of X - ray diffraction analysis, diffraction peaks of Cu and C were broaden and peak intensities were decreased as a function of MA time. Especially, the gradual disappearance of C peaks in the X- ray spectra is proved to be due to the lower atomic scattering factor of C. The calculated Cu crystallite sizes in Cu- C- X nanocomposite metal powders by Williamson- Hall equation were about lOnm size, on the other hand, the observed ones by TEM were in the range of 10 to 30nm.

  • PDF

Structural and electrical properties of perovskite Ba(Sm1/2Nb1/2)O3-BaTiO3 ceramic

  • Nath, K. Amar;Prasad, K.
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.115-128
    • /
    • 2012
  • The structural and electrical properties of $(1-x)Ba(Sm_{1/2}Nb_{1/2})O_3-xBaTiO_3$; ($0{\leq}x{\leq}1$) ceramics were prepared by conventional ceramic technique at $1375^{\circ}C$/7 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were derived from the X-ray diffraction (XRD) data using FullProf software whereas crystallite size and lattice strain were estimated from Williamson-Hall approach. XRD analysis of the compound indicated the formation of a single-phase cubic structure with the space group Pm m. Dielectric study revealed that the compound $0.75Ba(Sm_{1/2}Nb_{1/2})O_3-0.25BaTiO_3$ is having low and ${\varepsilon}^{\prime}$ and ${\varepsilon}^{{\prime}{\prime}}$ a low $T_{CC}$ (< 5%) in the working temperature range (up to+$100^{\circ}C$) which makes this composition suitable for capacitor application and may be designated as 'Stable Low-K' Class I material as per the specifications of the Electronic Industries Association. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in the system. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy of the compounds.

Hydrogen Storage Properties of Hydriding-Dehydriding Cycled Magnesium-Nickel-Iron Oxide Alloy

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung;Kim, Byoung-Goan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.171-175
    • /
    • 2012
  • By measuring the absorbed hydrogen quantity as a function of the number of cycles, the cycling properties of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy were investigated. The absorbed hydrogen quantity decreased as the number of cycles increased. The $H_a$ value varied almost linearly with the number of cycles. The maintainability of absorbed hydrogen quantity at n=100 was 89.0% for the hydriding reaction time of 10 min. After the $150^{th}$ hydriding-dehydriding cycle, Mg, $Mg_2Ni$, $Mg(OH)_2$, MgO, and Fe were observed. The phases were analyzed by Rietveld analysis from the XRD patterns of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy after 150 hydriding-dehydriding cycles. The crystallite size and strain of Mg were then estimated with the Williamson-Hall technique.

Effect of Basal-plane Stacking Faults on X-ray Diffraction of Non-polar (1120) a-plane GaN Films Grown on (1102) r-plane Sapphire Substrates

  • Kim, Ji Hoon;Hwang, Sung-Min;Baik, Kwang Hyeon;Park, Jung Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.557-565
    • /
    • 2014
  • We report the effect of basal-plane stacking faults (BSFs) on X-ray diffraction (XRD) of non-polar (11$\underline{2}$0) a-plane GaN films with different $SiN_x$ interlayers. Complete $SiN_x$ coverage and increased three-dimensional (3D) to two-dimensional (2D) transition stages substantially reduce BSF density. It was revealed that the Si-doping profile in the Si-doped GaN layer was unaffected by the introduction of a $SiN_x$ interlayer. The smallest in-plane anisotropy of the (11$\underline{2}$0) XRD ${\omega}$-scan widths was found in the sample with multiple $SiN_x$ layers, and this finding can be attributed to the relatively isotropic GaN mosaic resulting from the increase in the 3D-2D growth step. Williamson-Hall (WH) analysis of the (h0$\underline{h}$0) series of diffractions was employed to determine the c-axis lateral coherence length (LCL) and to estimate the mosaic tilt. The c-axis LCLs obtained from WH analyses of the present study's representative a-plane GaN samples were well correlated with the BSF-related results from both the off-axis XRD ${\omega}$-scan and transmission electron microscopy (TEM). Based on WH and TEM analyses, the trends in BSF densities were very similar, even though the BSF densities extracted from LCLs indicated that the values were reduced by a factor of about twenty.