• Title/Summary/Keyword: Wild yeast

Search Result 282, Processing Time 0.027 seconds

Heterologous Expression of Rhizopus Oryzae CYP509C12 Gene in Rhizopus Nigricans Enhances Reactive Oxygen Species Production and 11α-Hydroxylation Rate of 16α, 17-Epoxyprogesterone

  • Shen, Chaohui;Gao, Xiyang;Li, Tao;Zhang, Jun;Gao, Yuqian;Qiu, Liyou;Zhang, Guang
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.301-307
    • /
    • 2019
  • The $11{\alpha}$-hydroxylation of $16{\alpha}$, 17-epoxyprogesterone (EP) catalyzed by Rhizopus nigricans is crucial for the steroid industry. However, lower conversion rate of the biohydroxylation restricts its potential industrial application. The $11{\alpha}$-steroid hydroxylase CYP509C12 from R. oryzae were reported to play a crucial role in the $11{\alpha}$-hydroxylation in recombinant fission yeast. In the present study, the CYP509C12 of R. oryzae (RoCYP) was introduced into R. nigricans using the liposome-mediated mycelial transformation. Heterologous expression of RoCYP resulted in increased fungal growth and improved intracellular reactive oxygen species content in R. nigricans. The $H_2O_2$ levels in RoCYP transformants were approximately 2-folder that of the R. nigricans wild type (RnWT) strain, with the superoxide dismutase activities increased approximately 45% and catalase activities decreased approximately 68%. Furthermore, the $11{\alpha}$-hydroxylation rates of EP in RoCYP transformants (C4, C6 and C9) were 39.7%, 38.3% and 38.7%, which were 12.1%, 8.2% and 9.4% higher than the rate of the RnWT strain, respectively. This paper investigated the effect of heterologous expression of RoCYP in R. nigricans, providing an effective genetic method to construct the engineered strains for steroid industry.

Comprehensive Characterization of Mutant Pichia stipitis Co-Fermenting Cellobiose and Xylose through Genomic and Transcriptomic Analyses

  • Dae-Hwan Kim;Hyo-Jin Choi;Yu Rim Lee;Soo-Jung Kim;Sangmin Lee;Won-Heong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1485-1495
    • /
    • 2022
  • The development of a yeast strain capable of fermenting mixed sugars efficiently is crucial for producing biofuels and value-added materials from cellulosic biomass. Previously, a mutant Pichia stipitis YN14 strain capable of co-fermenting xylose and cellobiose was developed through evolutionary engineering of the wild-type P. stipitis CBS6054 strain, which was incapable of co-fermenting xylose and cellobiose. In this study, through genomic and transcriptomic analyses, we sought to investigate the reasons for the improved sugar metabolic performance of the mutant YN14 strain in comparison with the parental CBS6054 strain. Unfortunately, comparative whole-genome sequencing (WGS) showed no mutation in any of the genes involved in the cellobiose metabolism between the two strains. However, comparative RNA sequencing (RNA-seq) revealed that the YN14 strain had 101.2 times and 5.9 times higher expression levels of HXT2.3 and BGL2 genes involved in cellobiose metabolism, and 6.9 times and 75.9 times lower expression levels of COX17 and SOD2.2 genes involved in respiration, respectively, compared with the CBS6054 strain. This may explain how the YN14 strain enhanced cellobiose metabolic performance and shifted the direction of cellobiose metabolic flux from respiration to fermentation in the presence of cellobiose compared with the CBS6054 strain.

Identification and Characterization of Wild Yeasts Isolated from Korean Domestic Grape Varieties (국산 포도로부터 분리한 야생효모의 동정 및 특성)

  • Choi, Sang-Hoon;Hong, Young-Ah;Choi, Yoon-Jung;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.604-611
    • /
    • 2011
  • Several wild yeasts were isolated from Korean grape varieties before and during spontaneous fermentation. Among them, four strains were isolated based on the alcohol content and flavor production in wine after fermentation of apple juice. In this study, the four yeast strains were identified and characterized. PCR-restriction fragment length polymorphism analysis of ITS I-5.8S-ITS II region with restriction endonuclease Hae III and Hinf I resulted in that all the strains showed a typical pattern of Saccharomyces cerevisiae. Pulse field gel electrophoresis showed three different chromosome patterns with a same band between strains SS89 and SS812. When ITS I-5.8S-ITS II sequences of the four strains were compared with one another, they were similar to those of Saccharomyces cerevisiae CBS 4054 type strain. Identity of the sequences was higher than 97% with those of the type strain. Phylogenetic analysis showed based on the sequences showed they were genetically closed to the type strain. The four identified strains were tested in a medium containing 200 ppm potassium metabisulfite, and the MM10 and WW108 inhibition rates resulted at up to 24 h. The four strains were tested at an incubation temperature of $30^{\circ}C$. The 30% sugar concentration in the medium (w/v) showed the highest growth in 36 h, especially in the case of SS89, which was close to growth 40. The four strains were tested in an 8% ethanol medium (v/v). Alcohol tolerance was initially kept in the incubation process. The strains began to adapt, however, to the exceeded resistance. The four strains showed the lowest inhibition rate at 24 h.

Stability of Human Centromeric Alphoid DNA Repeat during Propagation in Recombination-Deficient Yeast Strains (효모의 재조합 변이주를 이용한 인간 Centromeric Alphoid DNA Repeat의 안정성에 관한 연구)

  • Kim, Kwang-Sup;Shin, Young-Sun;Lee, Sang-Yeop;Ahn, Eun-Kyung;Do, Eun-Ju;Park, In-Ho;Leem, Sun-Hee;SunWoo, Yang-Il
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.243-249
    • /
    • 2007
  • The centromere is a highly differentiated structure of the chromosome that fulfills a multitude of essential mitotic and meiotic functions. Alphoid DNA (${\alpha}$-satellite) is the most abundant family of repeated DNA found at the centromere of all human chromosomes, and chromosomes of primates in general. The most important parts in the development of Human Artificial Chromosomes (HACs), are the isolation and maintenance of stability of centromeric region. For isolation of this region, we could use the targeting hook with alphoid DNA repeat and cloned by Transformation-Associated Recombination (TAR) cloning technique in yeast Saccharomyces cerevisiae. The method includes rolling-circle amplification (RCA) of repeats in vitro to 5 kb-length and elongation of the RCA products by homologous recombination in yeast. Four types of $35\;kb{\sim}50\;kb$ of centromeric DNA repeat arrays (2, 4, 5, 6 mer) are used to examine the stability of repeats in homologous recombination mutant strains (rad51, rad52, and rad54). Following the transformation into wild type, rad51 and rad54 mutant strains, there were frequent changes in inserted size. A rad52 mutant strain showed extremely low transformation frequency, but increased stability of centromeric DNA repeat arrays at least 3 times higher than other strains. Based on these results, the incidence of large mutations could be reduced using a rad52 mutant strain in maintenance of centromeric DNA repeat arrays. This genetic method may use more general application in the maintenance of tandem repeats in construction of HAC.

Microbial Assessment of Wild Cabbage and its Control (양배추의 미생물 오염도 평가 및 제어)

  • Cho, Joon-Il;Kim, Keun-Sung;Bahk, Gyung-Jin;Ha, Sang-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.162-167
    • /
    • 2004
  • In this study, untreated (UT), water soaking (WT), and sanitizing solutions [chlorine at 100 ppm (CL): ethanol at 10% (ET); hydrogen peroxide at 1% (HP); chlorine at 100 ppm + ethanol at 10%(CE); chlorine at 100 ppm + hydrogen peroxide at 1% (CH); ethanol at 10% + hydrogen peroxide at 1% (EH); chlorine at 100 ppm + ethanol at 10% + hydrogen peroxide at 1% (CEH)] were compared in terms of their antimicrobial effectiveness against natural microflora of wild cabbage (Brassica oleracea var. capitata). All samples were kept in sanitizing solutions for 2 min, and effectiveness of sanitizing agents was evaluated based on number of decimal reduction of total aerobic mesophilic, total coliforms, E. coli, lactic acid bacteria, and yeast and mold counts. Average initial levels of these organisms in samples were $9.21{\pm}0.15,\;6.60{\pm}0.06,\;6.08{\pm}0.03,\;and\;3.66{\pm}0.08\;log_{10}\;CFU/g$ for total aerobic mesophilic bacteria, total coliforms, lactic acid bacteria, and yeasts and molds, respectively, Escherichia coli was not detected in any tested samples. Decimal reduction of populations of total aerobic mesophilic, total coliforms, E. coli, lactic acid bacteria, and yeasts and molds were: in $WT\;8.09,\;5.36,\;5.82,\;and\;3.57 log_{10}\;CFU/g;\;in \;CL\;7.39,\;4.10\;5.24,\;2.45\;log_{10}\;CFU/g;\;in\;ET\;6.78,\;4.23,\;5.20,\;2.50\;log_{10}\;CFU/g;\;in\;HP\;6.11,\;4.27,\;5.28,\;2.46\;log_{10}\;CFU/g;\;in\;CE\;6.18,\;4.26,\;5.31,\;2.49\;log_{10}\;CFU/g;\;in\;CH\;6.10,\;3.77,\;5.33,\;2.46\;log_{10}\;CFU/g;\;in\;EH\;6.07\;3.82,\;4.76,\;2.41\;log_{10}\;CFU/g;\;and\;in\;CEH\;5.27,\;3.45,\;4.45,\;2.15\;log_{10}\;CFU/g,$ respectively. Statistical analysis of the results showed effectiveness of CEH sanitizing solution for elimination of microbial contamination was the highest among all sanitizer treatments.

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

Studies on the Formation of L-Threonine by auxotrophic mutants of Brevibacterium flavum (Brevibacterium Flavum의 Auxotrophic Mutants에 의한 L-Threonine 생성(生成)에 관한 연구(硏究))

  • Lee, Kap-Rang;Park, Dong-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.4
    • /
    • pp.251-261
    • /
    • 1987
  • This study was attempted to increase the production of L-Threonine by Brevibacterium Flavum ATCC 14067, To select the strain which produce the highest threonine, mutants ere induced by N-methyl-N'-nitro-N-nitrosoguanidine treatment. The composition of media and cultural condition for its overproduction of threonine were also studied. In a threonine producer, strain B-13(Met-) was the strain producing the highest amount of threonige among methionine, lysine and isoleucine auxotrophs. The following results were obtained. 1. The wild strain and B-13(Met-) produced threonine 1.4mg/ml and 4.86mg/ml , respectively. 2. The optimum composition of medium for producing threonine by Brevibacterium Flavum B-13 was glucose 10%, ammonium sulfate 4%, potassium phosphate monobasic 0.2%, magnesium sulfate 0.05%, biotin $200{\mu}l$, thiamine $300{\mu}l$. Addition of nicotinic acid also led to increase L-threonine production. 3. In addition of organic nutrients to the fermentation medium, peptone n'ere effective and addition of methionine $100{\mu}g/ml$ produced the highest amount of L-Threonine. Aspartic acid and homoserine were also effective when these amino acid were added to the fermentstion medium. 4. Cultural conditon on threonine production by B-16 were investigated. The optimum pH was 7.0-8.0. The highest amount of threnine was produced after 4 days of cultural period.

  • PDF

Characterization of ${\alpha}$-amylase Producing Hybrid Constructed between Saccharomycopsis and Saccharomyces (Saccharomycopsis속과 Saccharomyces속의 잡종형성 균주에서 생산하는 ${\alpha}$-amylase의 특성)

  • Yang, Young-Ki;Moon, Myeng-Nim;Lim, Chae-Young;Rhee, Young-Ha;Kim, Jeong-Ho
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.315-321
    • /
    • 1999
  • This study has been performed to deveope a yeast strain having high ${\alpha}$-amylase production ability using nuclear transfer method. Hybrids formed between the strains of Saccharomyces fiburigera KCTC 7393 and Saccharomyces cerevisiae KCTC 7049 (tyr-, ura-)were obtained by nuclear transfer technique. Nuclei isolated from the wild type S. fiburigera strain were transfered into auxotrophic mutants S. cerevisiae and selected the hybrids showing an increased starch degrading capability were selected (MN-16). This transformant grew best and produced maximal ${\alpha}$-amylase activity on the medium containing 2% (V/V) soluble starch. ${\alpha}$-Amylase from MN-16 was purified electrophoretically homogenety and its properties were investigated. The enzyme was purified about 10.6 fold with an overall yield 9.7% from the culture medium by ammonium sulfate fractionation. DEAE-Sephacel column chromatography, and Sephacryl S-200 column chromatography. The purified enzyme showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight of the ${\alpha}$-amylase was estimated to be 53,000 daltons by SDS-PAGE and by gel permeation chromatography on Sephacryl S-200. The purified enzyme showed the maximum activity at pH 5.5 and 40${\circ}C$. The km value for soluble starch was 2.5㎎/㎖. The enzyme activity increased in the presence of $Ca^{2+}, Co^{2+}, EDTA, Mg^{2+}, Mn^{2+}, Zn^{2+}$, but inhibited by $Cu^{2+}, Fe^{2+}$, and $Ni^{2+}$

  • PDF

Transcriptional Regulation of a DNA Repair Gene in Saccharomyces cerevisiae

  • Jang, Yeon-Kyu;Sancar, Gwen-B.;Park, Sang-Dai
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1998.10b
    • /
    • pp.113-113
    • /
    • 1998
  • In Saccharomyces cerevisiae UV irradiation and a variety of chemical DNA -damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of DNA -damage inducible genes is PHRI, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHRI require an upstream activation sequence, UASPHRI. Here we report the identification of the UlvIE6 gene of S. cerevisiae as a regulator of UASPHRl activity. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHRI is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UNIE6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHRI mRNA, and increases the UV sensitivity of a rad2 mutant. The results suggest that UM E6 contributes to the regulated expression of a subset of damage-responsive genes in yeast. Furthermore, the upstream repression sequence, URSPHRI, is required for repression and damage-induced expression of PHRl. Here we show identification of YER169W and YDR096W as putative regulators acting through $URS_{PHRI}$. These open reading frames were designated as RPHI (YERl69W) and RPH2 (YDR096W) indicating regulator of PHRI. Simultaneous disruption of both genes showed a synergistic effect, producing a four-fold increase in basal level expression and a similar decrease m the induction ratio following treatment of methyl methanesulfonate(MMS). Mutation of the sequence ($AG_4$) bound by Rphlp rendered the promoter of PHRI insensitive to changes in RPHI or RPH2 status. The data suggest that RPHI and RPH2 act as damage-responsive negative regulators of PHRI. Surprisingly, the sequence bound by Rphlp in vitro is found to be $AG_4$ which is identical to the consensus binding site for the regulators Msn2p and Msn4p involved in stress-induced expression. Deletion of MSN2 and MSN4 has little effect on the induction$.$ ratio following DNA damage. However, all deletions led to a significant decrease in basal-level and induced expression of PHRI. These results imply that MSN2 and MSN4 are positive regulators of P HRI but are not required for DNA damage repression. [Supported by grant from NIH]om NIH]

  • PDF