• Title/Summary/Keyword: Wild type p53

Search Result 107, Processing Time 0.025 seconds

Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A (대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도)

  • Jung, Ji-Yeon;Na, Yun-sook;Jung, Ho-Chul;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

Interaction of promyelocytic leukemia/p53 affects signal transducer and activator of transcription-3 activity in response to oncostatin M

  • Lim, Jiwoo;Choi, Ji Ha;Park, Eun-Mi;Choi, Youn-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.203-212
    • /
    • 2020
  • Promyelocytic leukemia (PML) gene, through alternative splicing of its C-terminal region, generates several PML isoforms that interact with specific partners and perform distinct functions. The PML protein is a tumor suppressor that plays an important role by interacting with various proteins. Herein, we investigated the effect of the PML isoforms on oncostatin M (OSM)-induced signal transducer and activator of transcription-3 (STAT-3) transcriptional activity. PML influenced OSM-induced STAT-3 activity in a cell type-specific manner, which was dependent on the p53 status of the cells but regardless of PML isoform. Interestingly, overexpression of PML exerted opposite effects on OSM-induced STAT-3 activity in p53 wild-type and mutant cells. Specifically, overexpression of PML in the cell lines bearing wild-type p53 (NIH3T3 and U87-MG cells) decreased OSM-induced STAT-3 transcriptional activity, whereas overexpression of PML increased OSM-induced STAT-3 transcriptional activity in mutant p53-bearing cell lines (HEK293T and U251-MG cells). When wild-type p53 cells were co-transfected with PML-IV and R273H-p53 mutant, OSM-mediated STAT-3 transcriptional activity was significantly enhanced, compared to that of cells which were transfected with PML-IV alone; however, when cells bearing mutant p53 were co-transfected with PML-IV and wild-type p53, OSM-induced STAT-3 transcriptional activity was significantly decreased, compared to that of transfected cells with PML-IV alone. In conclusion, PML acts together with wild-type or mutant p53 and influences OSM-mediated STAT-3 activity in a negative or positive manner, resulting in the aberrant activation of STAT-3 in cancer cells bearing mutant p53 probably might occur through the interaction of mutant p53 with PML.

NADPH oxidase inhibitor diphenyleneiodonium induces p53 expression and cell cycle arrest in several cancer cell lines (NADPH oxidase 저해제인 diphenyleneiodonium의 p53 발현 및 암세포의 성장억제에 대한 연구)

  • Jo, Hong-Jae;Kim, Kang-Mi;Song, Ju-Dong;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.778-782
    • /
    • 2007
  • The Diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the cell growth progression of human colon cancer cells HCT-116 (wild-type p53), HT-29 (p53 mutant) and human breast cancer cells MCF-7 (wild-type p53). DPI treatment in cancer cells evoked a dose- and time-dependent growth inhibition, and also induced the cell cycle arrest in C2/M phase. The peak of cell population arrested in C2/M phase was observed at12 hr after treatment of DPI. In addition, DPI significantly induced the expression of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest, at 6 hr in DPI-stimulated cells. However, a catechol apocynin, which inhibits the assembly of NADPH oxidase, did not induce p53 expression. This suggest that p53 expression induced by DPI is not associated with the inhibition of NADPH oxidase. In conclusion, we suggest that DPI induces the expression of wild-type p53 by ROS-in-dependent mechanism in several cancer cells, and upregulated p53 may be involved in regulatory mechanisms for growth inhibition and cell cycle arrest at C2/M phase in DPI-stimulated cells.

Protective effect of p53 in vascular smooth muscle cells against nitric oxide-induced apoptosis is mediated by up-regulation of heme oxygenase-2

  • Kim, Young-Myeong;Choi, Byung-Min;Kim, Yong-Seok;Kwon, Young-Guen;Kibbe, Melina R.;Billiar, Timothy R.;Tzeng, Edith
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.164-169
    • /
    • 2008
  • The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygen-ase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.

Effect of Adenovirus-p53 to Non-Small Cell Lung Cancer Cell Lines (Adenovirus-p53이 비소세포폐암세포 성장에 미치는 영향에 관한 연구)

  • 박종호;이춘택;김주현
    • Journal of Chest Surgery
    • /
    • v.31 no.12
    • /
    • pp.1134-1146
    • /
    • 1998
  • Background: The tumor suppressor gene p53 is one of the most frequently altered genes in human tumors, including those of the lung. There is now a compelling evidence that wild-type p53 can negatively influence cell growth by causing G1 arrest or by inducing apoptosis. The possibilities of using p53 for gene therapy are also gathering much interest. Material and Method: Our approach towards understanding p53 function would be to study the biological consequences of overexpression of wild-type p53 in normal and tumor cells by using adenovirus vectors capable of giving high levels of the p53 gene product in cells. We have used this vector containing wild-type p53 to infect tumor cells with different p53 status (null, mutant, or wild-type) to confirm that expression of p53 in null or mutant cell lines becomes possible by Adenovirus-p53 transduction, to examine the effects of high levels of p53 expression on the growth properties of tumor cells, to evaluate the role of apoptosis in p53-mediated biological effects, and to examine the effect of Adenovirus-p53 on the tumorigenicities of the lung cancer cell lines in vitro. Result: The results of our study showed that cells expressing endogenous mutant p53 and those devoid of p53 expression altogether were significantly more sensitive to Adenovirus-p53-mediated cytotoxicity compared to tumor cells expressing endogenous wild-type p53 and that overexpression of wild-type p53 induced programmed cell death. Also we knew that Adenovirus-p53 significantly reduced tumor colony formation of human non-small cell lung cancer cell lines, and decreased the growth of pre-formed colonies in vitro. Conclusion: These results suggest that adenovirus is an efficient vector for mediating transfer and expression of tumor suppressor genes in human non-small cell lung cancer cells and that the tumor cells null for p53 or expressing mutant p53 readily undergo apoptosis by Adenovirus-p53.

  • PDF

Study on the expression and detection of the p53 mutation in Korean colon cancer cell lines (한국인의 대장암 세포주에서 p53 돌연변이의 발견과 발현에 관한 연구)

  • Jung, Ji-Yeon;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.151-161
    • /
    • 2001
  • Background: Inactivation in p53 tumor suppressor gene through a point mutation and deletion is one of the most frequent genetic changes found in human cancer, with 50% of an incidence. This high rate of mutation mostly suggests that the gene plays a central role in the development of cancer and the mutations detected so far were found in exons 5 to 8. Mutation of p53 locus produced accumulation of abnormal p53 protein, and negative regulation of cell proliferation and transcriptional activation as a suppressor of transformation were lost. In addition, inhibition of its normal cellular function of wild-type by mutant is an important step in tumorigenesis. Method: 4 colon cancer cell lines (SNU C1, C2A, C4, C5) were examined for mutation in exons 5 to 8 of the p53 tumor suppressor gene by PCR-SSCP analysis and expression pattern by western blotting and immunoprecipitation. p53-mediated transactivation ability were examined by CAT assay and base substitution of p53 in SNU C2A cell were detected by DNA sequencing. Results: 1) SNU C2A cell and SNU C5 cell were detected mobility shifts each in exon 5 and exon 7 of p53 gene by the PCR-SSCP method, implicating being of p53 mutation. 2) 3 colon cancer cell lines (SNU C1, SNU C2A, SNU C5) expressed wild type and mutant type p53 protein. 3) In northern blot experiment, SNU C2A and SNU C5 cell expressed high level of p53 mRNA. 4) Results of p53-mediated transactivation in colon cancer cell lines by CAT assay represented only SNU C2A cell has transcriptional activity. 5) DNA sequencing in SNU C2A cell showed missense mutation in codon 179 of one allele, histidine to arginine and wild type p53 in the other allele. Conclusion: Colon cancer cell lines showed correlation with mutation in p53 gene and accumulation of abnormal p53 protein. Colon cancer cell SNU C2A retained p53-mediated transactivation as heterozygous p53 with one mutant allele in 179 codon and the other wild-type allele.

  • PDF

Replication of Hepatitis B Virus is repressed by tumor suppressor p53 (간암치료신약개발 및 이의 제제화 연구)

  • 이현숙;허윤실;이영호;김민재;김학대;윤영대;문홍모
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.178-178
    • /
    • 1994
  • Hepatitis B Virus (HBV) is a DNA virus with a 3.2kb partially double-stranded genome. The life cycle of the virus involves a reverse transcription of the greater than genome length 3.5kb mRNA. This pegenomic RNA contains all the genetic information encoded by the virus and functions as an intermediate in viral replication. Tumor suppressor p53 has previously been shown to interact with the X-gene product of the HBV, which led us to hypothesize that p53 may act as a negative regulator of HBV replication and the role of the X-gene product is to overcome the p53-mediated restriction. As a first step to prove the above hypothesis, we tested whether p53 represses the propagation of HBV in in vitro replication system. By transient cotransfection of the plasmid containing a complete copy of the HBV genome and/or the plasmid encoding p53, we found that the replication of HBV is specifically blocked by wild-type p53. The levels of HBV DNA, HBs Ag and HBc/e Ag secreted in cell culture media were dramatically reduced upon coexpresion of wild-type p53 but not by the coexpression of the mutants of p53 (G154V and R273L). Furthermore, levels of RNAs originated from HBV genome were repressed more than 10 fold by the cotransfection of the p53 encoding plasmid. These results clearly states that p53 is a nesative regulator of the HBV replication. Next, to addresss the mechanism by which p53 represses the HBV replication, we performed the transient transfection experiments employing the pregenomic/core promoter-CAT(Chloramphenicol Acetyl Transferase) construct as a reporter. Cotransfection of wild-type p53 but not the mutant p53 expression plasmids repressed the CAT activity more than 8 fold. Integrating the above results, we propose that p53 represses the replication of HBV specifically by the down-regulation of the pregenomic/core promoter, which results in the reduced DNA synthesis of HBV. Currently, the mechanism by which HBV overcomes the observed p53-mediated restriction of replication is tinder investigation.

  • PDF

Role of p53-dependent PI3K in Radioresistance of Colon Cancer Cells (대장암 세포의 방사선저항성에 대한 p53의존성 PI3K의 역할)

  • Lee, Heui-Kwan;Kim, Jong-Suk;Kwon, Hyoung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.258-262
    • /
    • 2010
  • Radiotherapy is one of the major therapies for cancer treatment. p53 acts as a central mediator of the cellular response to stressful stimuli, such as radiation. Recently it has been known that activation of the phosphatidylinositol-3-kinase (PI3K) pathway is associated with radioresistance. In this study, we investigated whether X-irradiation up-regulates PI3K in a p53-dependent manner in human colon cancer cells. In order to study this phenomenon, we have treated p53-wild type and p53-mutant type HCT116 cells with X-ray. Treatment of wild type HCT116 cells with 8 Gy resulted in a marked increase in PI3K (p85), which paralleled an increase in PTEN, a counterpart of PI3K. However, these effects of X-rays in the p53-mutant cells were not observed. These results suggest that the X-irradiation-induced up-regulation of PI3K/PTEN pathway is p53-dependent.

Immunohistochemical Analysis for the Expression of DR5 TRAIL Receptor and p53 in Non-small Cell Lung Cancer (비소세포폐암에서 DR5 TRAIL 수용체와 p53에 관한 면역조직화학적 분석)

  • Lee, Kye-Young;Lee, Jung-Hyun;Kim, Sun-Jong;Yoo, Kwang-Ha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.4
    • /
    • pp.278-284
    • /
    • 2008
  • Background: TRAIL is a promising anticancer agent which induces selective tumor cell death due to a unique receptor system that includes death receptors and decoy receptors. DR5 TRAIL receptor is an originally identified p53-regulated death receptor gene that was induced, by doxorubicine, only in cells with a wild-type p53 status. We investigated that focused on the correlation between the DR5 and p53 expressions in non-small cell lung cancer (NSCLC). Methods: Immunohistochemical analysis, with using avidin-biotinylated horseradish peroxidase complex, was carried out in 89 surgically resected NSCLC formalin-fixed paraffin-embedded tissue sections. As primary antibodies, we used anti-DR5 polyclonal antibody and anti-p53 monoclonal antibody. A negative control was processed with each slide. The positive tumor cells were quantified twice and these values were expressed as percentage of the total number of tumor cells, and the intensity of immunostaining was expressed. The analysis of the DR5 expression was done separately in tumor area and in a nearby region of normal tissue. Results: The DR5 expression was high in the bronchial epithelium (89% of cases) but this was almost absent in type I & II pneumocytes, lymphocytes and smooth muscle cells. High DR5 expression rate in tumor was seen in 28% (15/53) of squamous cell carcinomas, in 47% (15/32) of adenocarcinomas and, in 50% (2/4) of large cell carcinomas. The DR5 expression did not show any statistical significance relationship with the T stage, N stage, or survival. However, the DR5 expression showed significant inverse correlation with the p53 expression. (p< 0.01). Conclusion: We demonstrated that the DR5 expression in NSCLC via immunohistochemical analysis is relatively tumor-specific except for that in the normal bronchial epithelium and it is significantly dependent on the p53 status. This might be in vivo evidence for the significance of the DR5 gene as a p53 downstream gene.

A Comparison Study of MMP Inhibitors' and Doxorubicin's Effects on the Apoptosis of U2OS Osteosarcoma Cell Line (U2OS 골육종 세포주의 세포자멸사에서 MMP억제제와 Doxorubicin 작용의 비교연구)

  • Moon, Jeong-Seok;Yeom, Bum-Woo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.13 no.2
    • /
    • pp.88-95
    • /
    • 2007
  • Purpose: The purpose of this study was to compare the proapoptotic effects of matrix metal-loproteinase inhibitor (MMPI) and doxorubicin on wild-type p53 osteosarcoma cell line, socalled U2OS cell line. Materials and Methods: U2OS cells were treated with MMP inhibitor III (MMPI III) and doxorubicin, either respectively or simultaneously. In cells treated with doxorubicin, Fas-neutralizing antibody so called ZB4 was additionally treated to examine whether the doxorubicin played a role through the Fas/FasL pathway. Cells were analysed regarding to apoptosis and cell death by flow cytometry. Results: U2OS cells incubated with doxorubicin showed significant amount of cell death in dose-dependent manner. However, those incubated with MMPI III mostly remained viable state. In addition, there is no relationship between two drugs. Cells treated with doxorubicin and ZB4 at the same time did not show down regulation of apoptosis through inhibition of Fas/FasL pathway. Conclusion: It is important to re-examine MMP inhibitor's effect on other osteosarcoma cell line with wild-type p14 as well as wild-type p53 to evaluate its proapoptotic effect.

  • PDF