• Title/Summary/Keyword: Wild soybean

Search Result 134, Processing Time 0.024 seconds

Development and Utilization of KASP Markers Targeting the Lipoxygenase Gene in Soybean

  • Seo-Young Shin;Se-Hee Kang;Byeong Hee Kang;Sreeparna Chowdhury;Won-Ho Lee;Jeong-Dong Lee;Sungwoo Lee;Yu-Mi Choi;Bo-Keun Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.294-303
    • /
    • 2023
  • Lipoxygenase gives soybeans their grassy flavor, which can disrupt food processing efficiency. This study aimed to identify soybean genotypes with lipoxygenase deficiency among 1,001 soybean accessions and to develop kompetitive allele specific PCR (KASP) markers that can detect lipoxygenase mutations. Three lipoxygenase isozymes (Lox1, Lox2, and Lox3) were analyzed using a colorimetric assay based on a substrate-enzyme reaction. Among the 1,001 accessions examined, two (IT160160 and IT276392) exhibited a deficiency solely in Lox1, and one (IT269984) lacked both Lox1 and Lox2. IT160160 had a 74-bp deletion in exon 8 of Lox1 (Glyma13g347600), whereas IT276392 displayed a missense mutation involving the change of C to A at position 2,880 of Lox1. Moreover, we successfully developed four KASP markers that specifically target Lox1, Lox2, and Lox3 mutations. To validate the Lox1 KASP markers, we used two F2:3 populations generated through a cross between Daepung 2 (lipoxygenase wild type, maternal parent), IT160160, and IT276392 (null Lox1, paternal parent). The results revealed that the Daepung 2 × IT160160 group followed the expected 3:1 ratio according to Mendel's law, whereas the Daepung 2 × IT276392 group did not. Furthermore, a comparison between the colorimetric and KASP marker analyses results revealed a high agreement rate of 96%. KASP markers offer a distinct advantage by allowing the distinction of heterozygous types independent of other variables. As a result, we present an opportunity to expedite the lipoxygenase-deficient cultivar development.

The Improvement of surface activity and Emulsification Activity by Transformation of Lipase Gene in Klebsiella sp. KCL-1, Oil-Degrading Bacterium. (Lipase gene의 도입에 의한 유류분해세균 Klebsiella sp. KCL-1의 표면활성과 유화력 향상)

  • 정수열
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.834-839
    • /
    • 2004
  • To improve and oil degrading activity, the lipase gene from Pseudomonase sp. was transformed into Klebsiella sp. KCL-l, an oil degrading bacterium. The selected trasformant was named as a KCL-1/pET-Lip. The surface tension of culture broth of KCL-1/pET-Lip was decreased to 33 dyne/cm from 55 dyne/cm using 4% (v/v) soybean oil as sole carbon source. The surface tension were 44 and 37.5 dyne/cm, to 2% (w/v) glucose and 4% (v/v) kerosene medium, respectively. The emulsification activity of the biosurfactant solution containing lipase of KCL-l/pET-Lip improved better than wild type KCL-l. The soybean oil was most efficient carbon source and substrate for surface activity and emulsification activity of KCL-1/pET-Lip. The expression of lipase was confirmed by SDS-PAGE.

Identification of Quantitative Trait Loci Associated with Isoflavone Contents in Soybean Seed

  • Kim Myung Sik;Park Min Jung;Hwang Jung Gyu;Jo Soo Ho;Ko Mi Suk;Chung Ill Min;Chung Jong Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.423-428
    • /
    • 2004
  • Soybean seeds contain high amounts of isoflavones that display biological effects and isoflavone content of soybean seed can vary by year, environment, and genotype. Objective of this study was to identify quantitative trait loci that underlie isoflavone content in soybean seeds. The study involved 85 $F_2$ populations derived from Korean soybean cultivar 'Kwangkyo' and wild type soybean 'IT182305' for QTL analysis associated with isoflavone content. Isoflavone content of seeds was determined by HPLC. The genetic map of 33 linkage groups with 207 markers was constructed. The linkage map spanned 2,607.5 cM across all 33 linkage groups. The average linkage distance between pair of markers among all linkage groups was 12.6 cM in Kosambi map units. Isoflavone content in $F_2$ generations varied in a fashion that suggested a continuous, polygenic inheritance. Eleven markers (4 RAPD, 3 SSR, 4 AFLP) were significantly associated with isoflavone content. Only two markers, Satt419 and CTCGAG3 had F-tests that were significant at P<0.01 in $F_2$ generation for isoflavone content. Interval mapping using the $F_2$ data revealed only two putative QTLs for isoflavone content. The peak QTL region on linkage group 3, which was near OPAG03c, explained $14\%$ variation for isoflavone content. The peak QTL region on linkage group 5, which was located near OPN14 accounted for $35.3\%$ variation for isoflavone content. Using both Map-Maker-QTL $(LOD{\geq}2.0)$ and single-factor analysis $(P{\leq}0.05)$, one marker, CTCGAG3 in linkage group 3 was associated with QTLs for isoflavone content. This information would then be used in identification of QTLs for isoflavone content with precision

Genetic Diversity and Relationship in Soybean MDP (Mutant Diversity Pool) Revealed by TRAP and TE-TRAP Markers

  • Kim, Dong-Gun;Bae, Chang-Hyu;Kwon, Soon-Jae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.32-32
    • /
    • 2019
  • Mutation breeding is the useful tool to improve agronomic traits in various crop species. Soybean is most important crop and is rich in protein and oil contents. Despite of the importance as economic value and various genetic resource of soybean, there have been limited studies of genetic relationship among mutant resources through radiation breeding. In this study, the agronomical phenotype for selecting various genetic resources was evaluated in 528 soybean mutant lines. As a result, 210 soybean mutants with their original cultivars were selected with various traits. We named 210 selected lines as Mutant Diversity Pool (MDP). The genetic diversity and the relationship of the MDP were investigated using TRAP and TE-TRAP markers. In TRAP analysis, sixteen primer combination (PC)s were used and a total of 551 fragments were amplified. The highest (84.00%) and the lowest (32.35%) polymorphism levels were showed in PC MIR157B+Ga5 and B14G14B+Ga3, respectively. The mean of PIC values was 0.15 ranging from 0.07 in B14G14B+Sa12 to 0.23 in MIR157B+Sa4. Phylogenetic and population structure analysis indicated that the 210 MDP lines dispersed to four groups among the wild types and their mutants. The highest genetic diversity among populations was observed between lines Paldal and 523-7 (Fst=0.409), whereas the lowest genetic diversity was between population KAS360-22 and 94seori (Fst=0.065). AMOVA showed 11.583 (21.0%) and 43.532 (79.0%) variations in inter and intra mutant population, respectively. Overall, the genetic similarity of each intra mutant populations was closer than that of inter mutant population. A total of 408 fragments were amplified in the 210 MDP using twelve PCs of TE-TRAP markers that were obtained from a combination of three TIR sequence of transposable elements (MITE-stowaway; M-s, MITE-tourist; M-t, PONG). The highest (77.42%) and the lowest (56.00%) polymorphism levels were showed in PONG+Sa4 and PONG+Sa12, respectively. The mean of PIC values was 0.15 ranging from 0.09 in M-s+Sa4 and M-s+Ga5 to 0.21 in M-t+Ga5. AMOVA of M-s showed 2.209 (20%) and 8.957 (80%) variations in inter and intra mutant population, respectively. AMOVA of M-t showed 2.766 (18%) and 12.385 (82%) variations in inter and intra mutant population, respectively. AMOVA of PONG showed 3.151 (29%) and 7.646 (71%) variations in inter and intra mutant population, respectively. According to our study, the PONG had higher inter mutant population and lower intra mutant population. This mean was that for aspect of radiation sensitivity, M-s and M-t showed higher mobility than that of PONG. Our results suggest that the TRAP and the TE-TRAP markers may be useful for assessing the genetic diversity and relationship among soybean MDP and help to improve our knowledge of soybean mutation/radiation breeding.

  • PDF

Introduction, Development, and Characterization of Supernodulating Soybean Mutant. 1. Mutagenesis of Soybean and Selection of Supernodulating Soybean Mutant (다량 뿌리혹 형성 콩 계통의 도입 개발 및 생육특성구명 1. 돌연변이유기에 의한 콩 초다뿌리혹형성 계통선발)

  • Lee, Hong-Suk;Chae, Young-Am;Park, Eui-Ho;Kim, Yong-Wook;Yun, Kwang-Il;Lee, Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.247-253
    • /
    • 1997
  • Development of soybean cultivars with great nodulation and high nitrogen fixation activity, derived mostly from mutagenesis, may decrease inputs of chemical fertilizer nitrogen into the soil-plant system. Soybean seeds (cv. Jangyupkong, Hwanggeumkong, and Geomjungkong 1) were treated with three different levels of EMS (ethyl methanesulfonate) concentration(30, 50, and 70mM). Increasing the doses of EMS resulted in decreased field emergence rate of seeds, whereas it did not increase M$_2$ mutation frequencies. This indicated that the most efficient concentration of EMS was 30mM for generating mutants. Extensive mutagenesis of Sinpaldalkong 2 with 30mM EMS was undertaken to isolate soybean mutants with greater nodulation. Approximately 8, 200 M$_2$ families were screened for greater nodulation on 5 mM nitrate after inoculation with Bradyrhizobium japonicum strain YCK213-KFCC-10728. Mutant SS-2 nodulated more than the wild type. Comparison of supernodulation between SS-2 and two nts mutants(nts 1007 and nts 1116) revealed that SS-2 showed the supernodulation character at an earlier growth stage than the two nts mutants. Further studies should be needed to characterize the difference in timing of nodulation between SS-2 and nts mutants.

  • PDF

Relationship between Nodulating Characters and Yield Components in Supernodulating Soybean Mutants

  • Park Sei Joon;Youn Jong Tag;Kim Wook Han;Lee Jae Eun;Kwon Young Up;Shin Jin Chul;Seong Rak Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.5-10
    • /
    • 2005
  • This experiment was conducted to clarify the functions of supernodulating characters on seed yield determination through the comparison of agricultural traits of supernodulating soybean mutants, Sakukei4, SS2-2, and their parent cultivars, Enrei and Shinpaldalkong2. The plant dry weights of supernodulating mutants, Sakukei4 and SS2-2, were $52\%$ and $61\%$ of their wild type parents at full seed stage (R6). However, the relative growth rate (RGR) from the pod set stage (R3) to R6 of Sakukei4 was 0.022 g/g/day and that of SS2-2 was 0.016 g/g/day, which were higher than those of their parents. Nodule number and dry weight were increased in two supernodulating mutants by the R6 stage. The nitrogen concentrations of leaf, petiole and stem of Sakukei4 were higher than those of Enrei. SS2-2 showed higher nitrogen concentration in petiole than Shinpaldalkong2 had. The positive correlations were appeared between nodule dry weight, plant dry weight and pod number, in two supernodulating mutants during the period from R3 to R6 stage. Although all of the yield components and seed yield were lower in two supernodulating mutants than their parents at the stage of full maturity (R8), the harvest index was higher in supernodulating mutants. The increasing rates of pod number to stem dry weight in two supernodulating mutants showed the higher than those of two their parents at R8 stage. In conclusion, the relative growth rates during the early to the middle reproductive growth period were higher in supernodulating mutants than the wild types. This could be resulted in an increase in pod number. The increase of relative growth rate was the result of the successive supplement of nitrogen source from biological nitrogen fixation (BNF) of nodules during the middle reproductive growth period in supernodulating mutants.

Growth and Maturity in Response to Planting Times in Supernodulating Soybean Mutants

  • Park Sei Joon;Youn Jong Tag;Lee Jae Eun;Kim Wook Han;Kwon Young Up;Shin Jin Chul;Seong Rak Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • This experiment was conducted to investigate the changes of growth and maturity and to clarify the function of supernodulating characters, excessive nodules and high biological nitrogen fixation rate (BNF), on maturity in response to different planting time in supernodulating soybean mutants. Two supernodulating soybean mutants, Sakukei4 and SS2-2, and their parent cultivars, Enrei and Shinpaldalkong2, were planted on May 24 and June 15, 2004. The degrees of the shortening of growth days by the planting time delay were 18 to 22 days in four cultivar, and there were no significant differences among the cultivars. However, four cultivars showed the different maturity properties. Sakukei4, mutated from Enrei, showed later maturity than that of Enrei, and 882-2, mutated from Shinpaldalkong2, showed earlier maturity than that of Shinpaldalkong2. The plant and nodule dry weights at R6 stage of Sakukei4 showed the smallest decrement and those of SS2-2 was showed the largest decrement by the delay of planting time. The photosynthetic rates of Sakukei4 during the late reproductive growth period were slowly decreased, however those of SS2-2 were steeply decreased in two planting time treatments. Overall, the growth of Sakukei4 was decreased slowly, however the growth of SS2-2 was decreased sharply according to the delay of planting time. The percentage of seed yield of Sakukei4 in June planting plot compared with May planting plot at R8 stage was $92\%$, which was the lowest decreasing rate of yield among the cultivars, and in the case of SS2-2, it was in $76\%$, the highest one. These results indicated that the responses of supernodulating mutants by the delay of planting time were very similar to the wild types. This means supernodulating characters in supernodulating soybean mutants might not affect to the maturity property. Additionally, the maturity property could be considered as an important characteristics to decide or to select on the developments of supernodulating soybean mutants, which have a low productivity by an excessive nodules, especially.

Screening for Genotypes Lacking Lipoxygenase from Germplasm Collection of Korean Soybean Land Races (한국 재래종 콩집단에서 비린내 없는 콩품종 육성을 위한 Lipoxygenase 결실인자 변이 연구)

  • Kwon, Shin-Han;Park, Kyung-Sook;Kim, Mi-Young;Kim, Bong-Ryong;Song, Hi-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.6
    • /
    • pp.528-533
    • /
    • 1992
  • Soybean seeds contain lipoxygenase, which is responsible for the objectionable beany flavors in soybean seeds. The isozymes of lipoxygenase (1$\times$1, 1$\times$2, 1$\times$3) were discovered in United States of America, Japan, and Korea, and the mode of inheritance of the mutant genes was determined. This investigation was conducted to screen lipoxygenase-1, 2, and 3 lacking soybean lines from the Korean soybean land race population. Two lipoxygenase-1lacking lines, KAS 610-8 and KAS 621-8 were found in this investigation. In general, lipoxygenase acking varieties were small in seed size and low in oil content. A severe pod borer damage was observed in the two selected lipoxygenase-1 lacking lines. Lipoxygenase lacking line was not found in Korean wild soybean population used in this study and the lipoxygenase lacking lines were found only in Kyung-Nam province and the results imply that lipoxygenase lacking mutants were induced recently in cultivars.

  • PDF

Recipes for dishes controlling diabetes and its blood glucose response effect (당뇨조절식의 조리법과 혈당반응효과)

  • 김명애;김연선;윤석권
    • Korean journal of food and cookery science
    • /
    • v.15 no.4
    • /
    • pp.401-409
    • /
    • 1999
  • This stydy was performed to improve recipes for dishes with seaweed, spinach, wild parsley, and yam as food source of low blood glucose and to select better favorite dishes controlling diabetes trough sensory test of 9 scoring method. Also the effect controlling blood glucose based on observation of blood glucose and glycemic index was applied for the normal person. The traditional recipes gained high acceptability in the sensory test. The Segogiguk, Daenjanguk, Guonsaeujuk, Sujebi, Bokeum and Beoseokhoi of seaweed ranged from 8.2 to 7.2. The Danggun juice, Daenjangguk, jeon and Dubumuchim of spinach was evaluated as 8.2 to 7.3. The Gulsaengche, Beefmuchim, Juice and Chodae of wild parsley showed high acceptability as 7.9 to 6.8. The Jorim and Jeon of yam ranged form 7.7 and 6.8. Addording to the result of blood glucose response of normal person meals controlling dishes showed GI 57.9-GI 91.3 compared to GI 100 of usual meal. The rice boiled with 30% of black soybean and additional dishes controlling diabetes were most effective as GI 57.9.

  • PDF

Diversity and Geographical Relationships by SSR Marker in Subgenus Soja Originated from Korea (SSR 마커에 의한 한국 원산 Soja 아속의 다양성과 지리적 유연관계)

  • Cho Yang-Hee;Yoon Mun-Sup;Lee Jeong-Ran;Baek Hyung-Jin;Kim Chang-Yung;Kim Tae-San;Cho Eun-Gi;Lee Hee-Bong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.239-247
    • /
    • 2006
  • This study was carried out to investigate polymorphism, gene diversity, and geographical relationships of 81 Korean wild (Glycine soja) and 130 cultivated soybeans (G. max) using seven simple sequence repeat (SSR) markers. A total of 144 alleles were observed in 211 accessions with an average of 20.6. Each SSR loci showed 13 (Satt532) to 41 (Sat_074) multialleles. The range of alleles within the loci was wider in wild soybean than the cultivated soybeans. The average genetic diversity values were 0.88 and 0.69 in wild and cultivated soybeans, respectively. In a scatter diagram of wild and cultivated soybeans based on canonical discriminant analysis, CAN1 accounted for 84.2% while CAN2 did 8.5%. Two species were grouped into three: group I (G. max), group II (G. soja), and group III (complex of G. max and G. soja). The geographical relationships of wild soybean were distinguished into two groups: Gyeonggi for Group I, and Gyeongsang, Jeolla, Gangwon, and Chungcheong for Group II. Those of cultivated soybeans were distinguished into Gyeonggi, Gangwon, and Gyeongsang for Group I, and Jeolla and Chungcheong for Group II. Therefore, the geographical relationships of wild soybeans were well typified based on the ecosystems of the Korean peninsula.