• Title/Summary/Keyword: Wild boar

Search Result 80, Processing Time 0.026 seconds

Responses of an herbaceous community to wild boar (Sus scrofa coreanus Heude) disturbance in a Quercus mongolica forest at Mt. Jeombong, Korea

  • Lyang, Doo-Yong;Lee, Kyu-Song
    • Journal of Ecology and Environment
    • /
    • v.33 no.3
    • /
    • pp.205-216
    • /
    • 2010
  • This research identified a disturbance regime caused by wild boar in a mature Quercus mongolica forest and analyzed the impact of this disturbance on the structure and distribution of herbaceous plants in Mt. Jeombong, Korea. We demonstrate that disturbance by wild boar was most frequent from winter to early spring, but also occurred year round. Areas which were frequently disturbed by wild boar included the mountain ridge, the mild slope on the north face, and sites with high concentration of Erythronium japonicum. The disturbance cycle by the wild boar in this region was estimated at approximately 2.8 years. The wild boar's reduced the community's species diversity and herbaceous coverage, and increased its evenness. This disturbance reduced the coverage of spring ephemeral; Veratrum nigrum var. ussuriense, Symplocarpus niponnicus, Anemone koraiensis and Corydalis turtschaninovii were particularly sensitive. In addition, summer green herbaceous plants such as Astilbe chinensis, Ainsliaea acerifolia, Meehania urticifolia, and Pimpinella brachycarpa were sensitive to the wild boar's. It was found that wild boar ate E. japonicum most selectively of all plants in this investigation area. In conclusion, together with micro-topography, wind, formation of gaps of a forest and rearrangement of litter layer, wild boar's disturbance is an important factor influencing the dynamic changes of an herbaceous community in a mature temperate hardwood forest.

Surface Reflectance Related with Color Characteristics for Pig × Wild Boar Meat

  • Irie, M.;Nishimori, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1321-1325
    • /
    • 2001
  • Color characteristics of pig ${\times}$ wild boar meat were determined with a fiber-optic spectrophotometer. The spectrophotometric characteristic of reduced-myoglobin observed after cutting immediately changed to the spectrophotometric characteristic of oxymyoglobin after 15 minutes of cutting. The spectrophotometry at 400 to 700 nm after 30, 45, 60, 90 and 120 minutes of cutting changed slightly. Compared with M. longissimus thoracis, M. rhomboideus had higher reflectance around 400 nm and from 650 to 1,100 nm and M. spinalis was lower in the visible light region after 60 minutes of cutting. The pig ${\times}$ wild boar meat was similar in reflectance shape with pork but was lower in intensity. The differences depended on the anatomical location. The M. rhomboideus from pig ${\times}$ wild boar had greatly lower reflectance than that from pig, the M. longissimus thoracis reflectance was lower, but M. spinalis reflectance hardly differed. These results showed that pig ${\times}$ wild boar meat had no special characteristic of blooming but had distinguishing characteristic of meat color among anatomical locations.

Assessing the Carrying Capacity of Wild Boars in the Bukhansan National Park using MaxEnt and HexSim Models

  • Tae Geun Kim
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.3
    • /
    • pp.115-126
    • /
    • 2023
  • Understanding the carrying capacity of a habitat is crucial for effectively managing populations of wild boars (Sus scrofa), which are designated as harmful wild animal species in national parks. Carrying capacity refers to the maximum population size supported by a park's environmental conditions. This study aimed to estimate the appropriate wild boar population size by integrating population characteristics and habitat suitability for wild boars in the Bukhansan National Park using the HexSim program. Population characteristics included age, survival, reproduction, and movement. Habitat suitability, which reflects prospecting and resource acquisition, was determined using the Maximum Entropy model. This study found that the optimal population size for wild boar ranged from 217 to 254 individuals. The population size varied depending on the amount of resources available within the home range, indicating fewer individuals in a larger home range. The estimated wild boar population size was 217 individuals for the minimum amount of resources (50% minimum convex polygon [MCP] home range), 225 individuals for the average amount of resources (95% MCP home range), and 254 individuals for the maximum amount of resources (100% MCP home range). The results of one-way analysis of variance revealed a significant difference in wild boar population size based on the amount of resources within the home range. These findings provide a basis for the development and implementation of effective management strategies for wild boar populations.

Habitat preference of wild boar (Sus scrofa) for feeding in cool-temperate forests

  • Kim, Youngjin;Cho, Soyeon;Choung, Yeonsook
    • Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.297-304
    • /
    • 2019
  • Background: The growing wild boar population has become a social issue and its feeding characteristics could affect the physical condition and the plant species composition in the South Korean forests. We aimed to reveal the preference of the wild boar on forest type and site condition as feeding grounds in two cool-temperate forested national parks, Odaesan and Seoraksan, in order to provide information to manage the growing population. Results: The 75 plots (53.6%) out of 140 plots were used as feeding grounds by the wild boar, implying a considerably large population. Especially, the observation frequency as feeding ground was the highest in Quercus forests (73.3%), and it was significantly more preferred than deciduous forest type (44.2%) and coniferous forest type (32.4%) (${\chi}^2=17.591$, p < 0.001). Significantly more and deeper pits were found in Quercus forests. Moreover, high elevation and gentle slope ridge were relatively preferred regardless of forest distribution. Conclusions: South Korean forests are growing qualitatively and quantitatively. Particularly, Quercus forest area has increased markedly, while coniferous forest area has decreased. Since the Quercus forest provides rich food sources for the wild boar, the enlargement of this forest type is expected to increase the wild boar population. The forests located at high elevations have high species diversity, and it is expected that these forests will be greatly affected by the increase in the wild boar population as preferred feeding grounds.

Comparison of antibiotic resistance profiles for Escherichia coli isolated from wild boar and domestic pig fecal samples

  • Yoo, Sung J.;Sunwoo, Sun Young;Seo, Sang Won;Lyoo, Young S.
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.1
    • /
    • pp.41-46
    • /
    • 2015
  • Increasing presence of wild boar around cities and suburban areas is a growing concern with respect to agronomy, environmental ecology, and public safety. In this study, antibiotic resistance profiles of Escherichia (E.) coli isolated from wild boar and domestic pig fecal samples were compared. Eighty E. coli samples were isolated from wild boars. Resistance of the bacteria to 14 common antimicrobial agents used in human and veterinary medicine was evaluated. Ninety-five E. coli isolates from domestic pig farms were used for comparison. Common and distinct antibiotic resistance patterns were observed when comparing wild boar and domestic pig isolates, indicating that wild boars may significantly influence environmental microbiology.

Identification of African swine fever virus genomic DNAs in wild boar habitats within outbreak regions in South Korea

  • Lee, Kyung-Lak;Choi, Yongjun;Yoo, Jongchan;Hwang, Jusun;Jeong, Hyun-Gi;Jheong, Weon-Hwa;Kim, Seon-Hee
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.28.1-28.6
    • /
    • 2021
  • An African swine fever (ASF) outbreak in wild boars was first reported on October 2, 2019, in South Korea. Since then, additional cases were reported in South Korea's border areas. We here report the identification of ASF virus (ASFV) DNAs from two out of eight environmental abiotic matter samples collected from areas where ASF-positive wild boar carcasses were found. Comparative genomic investigations suggested that the contaminating ASFV DNAs originated from the wild boar whose carcass had been found near the positive sample sites. This is the first report on the identification of ASF viral material in wild boar habitats.

Spargana in a Weasel, Mustela sibirica manchurica, and a Wild Boar, Sus scrofa, from Gangwon-do, Korea

  • Lee, Seung-Ha;Choe, Eun-Yoon;Shin, Hyun-Duk;Seo, Min
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.3
    • /
    • pp.379-381
    • /
    • 2013
  • To know the status of sparganum (plerocercoid of Spirometra erinacei) infection in the Korean wild life, several species of wild animals were captured in Gangwon-do and examined for their status of infection with spargana. From February to December 2011, a total of 62 wild boars, 5 badgers, 1 weasel, 1 Siberian chipmunk, and 53 wild rodents were captured, and their whole muscles were examined with naked eyes for the presence of spargana worms. From the weasel and 1 wild boar, a total of 5 spargana specimens were extracted. The weasel was for the first time recorded as an intermediate or paratenic/transport host of S. erinacei in Korea, and both the weasel (Mustela sibirica manchurica) and wild boar (Sus scrofa) were added to the list of wild animals carrying spargana.

The Robust Phylogeny of Korean Wild Boar (Sus scrofa coreanus) Using Partial D-Loop Sequence of mtDNA

  • Cho, In-Cheol;Han, Sang-Hyun;Fang, Meiying;Lee, Sung-Soo;Ko, Moon-Suck;Lee, Hang;Lim, Hyun-Tae;Yoo, Chae-Kyoung;Lee, Jun-Heon;Jeon, Jin-Tae
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.423-430
    • /
    • 2009
  • In order to elucidate the precise phylogenetic relationships of Korean wild boar (Sus scrofa coreanus), a partial mtDNA D-loop region (1,274 bp, NC_000845 nucleotide positions 16576-1236) was sequenced among 56 Korean wild boars. In total, 25 haplotypes were identified and classified into four distinct subgroups (K1 to K4) based on Bayesian phylogenetic analysis using Markov chain Monte Carlo methods. An extended analysis, adding 139 wild boars sampled worldwide, confirmed that Korean wild boars clearly belong to the Asian wild boar cluster. Unexpectedly, the Myanmarese/Thai wild boar population was detected on the same branch as Korean wild boar subgroups K3 and K4. A parsimonious median-joining network analysis including all Asian wild boar haplotypes again revealed four maternal lineages of Korean wild boars, which corresponded to the four Korean wild boar subgroups identified previously. In an additional analysis, we supplemented the Asian wild boar network with 34 Korean and Chinese domestic pig haplotypes. We found only one haplotype, C31, that was shared by Chinese wild, Chinese domestic and Korean domestic pigs. In contrast to our expectation that Korean wild boars contributed to the gene pool of Korean native pigs, these data clearly suggest that Korean native pigs would be introduced from China after domestication from Chinese wild boars.

Basic reproduction number of African swine fever in wild boars (Sus scrofa) and its spatiotemporal heterogeneity in South Korea

  • Lim, Jun-Sik;Kim, Eutteum;Ryu, Pan-Dong;Pak, Son-Il
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.71.1-71.12
    • /
    • 2021
  • Background: African swine fever (ASF) is a hemorrhagic fever occurring in wild boars (Sus scrofa) and domestic pigs. The epidemic situation of ASF in South Korean wild boars has increased the risk of ASF in domestic pig farms. Although basic reproduction number (R0) can be applied for control policies, it is challenging to estimate the R0 for ASF in wild boars due to surveillance bias, lack of wild boar population data, and the effect of ASF-positive wild boar carcass on disease dynamics. Objectives: This study was undertaken to estimate the R0 of ASF in wild boars in South Korea, and subsequently analyze the spatiotemporal heterogeneity. Methods: We detected the local transmission clusters using the spatiotemporal clustering algorithm, which was modified to incorporate the effect of ASF-positive wild boar carcass. With the assumption of exponential growth, R0 was estimated for each cluster. The temporal change of the estimates and its association with the habitat suitability of wild boar were analyzed. Results: Totally, 22 local transmission clusters were detected, showing seasonal patterns occurring in winter and spring. Mean value of R0 of each cluster was 1.54. The estimates showed a temporal increasing trend and positive association with habitat suitability of wild boar. Conclusions: The disease dynamics among wild boars seems to have worsened over time. Thus, in areas with a high elevation and suitable for wild boars, practical methods need to be contrived to ratify the control policies for wild boars.

Cross-Reactivity of Porcine Immunoglobulin A Antibodies with Fecal Immunoglobulins of Wild Boar (Sus scrofa) and Other Animal Species

  • Sang won Seo;Sung J. Yoo;Sunyoung Sunwoo;Bang hun Hyun;Young S. Lyoo
    • IMMUNE NETWORK
    • /
    • v.16 no.3
    • /
    • pp.195-199
    • /
    • 2016
  • Fecal samples obtained from wild boar habitats are useful for the surveillance of diseases in wild boar populations; however, it is difficult to determine the species of origin of feces collected in natural habitats. In this study, a fecal IgA ELISA was evaluated as a method for identifying the porcine species from fecal samples. Both domestic pigs (Sus scrofa domestica) and wild boars (Sus scrofa coreanus) showed significantly higher levels of fecal IgA than other animal species. Additionally, age dependent changes in the level of Ig A in wild boars and domestic pigs were identified; Titers of Ig A were highest in suckling period and lowest in weanling period.