Browse > Article
http://dx.doi.org/10.1007/s10059-009-0139-3

The Robust Phylogeny of Korean Wild Boar (Sus scrofa coreanus) Using Partial D-Loop Sequence of mtDNA  

Cho, In-Cheol (Jeju Sub-Station, National Institute of Animal Science, Rural Development Administration)
Han, Sang-Hyun (Jeju Sub-Station, National Institute of Animal Science, Rural Development Administration)
Fang, Meiying (College of Animal Science and Technology, China Agricultural University)
Lee, Sung-Soo (Jeju Sub-Station, National Institute of Animal Science, Rural Development Administration)
Ko, Moon-Suck (Jeju Sub-Station, National Institute of Animal Science, Rural Development Administration)
Lee, Hang (Conservation Genome Resource Bank for Korean Wildlife, Brain Korea 21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University)
Lim, Hyun-Tae (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University)
Yoo, Chae-Kyoung (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University)
Lee, Jun-Heon (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University)
Jeon, Jin-Tae (Division of Applied Life Science (Brain Korea 21 Program), Graduate School of Gyeongsang National University)
Abstract
In order to elucidate the precise phylogenetic relationships of Korean wild boar (Sus scrofa coreanus), a partial mtDNA D-loop region (1,274 bp, NC_000845 nucleotide positions 16576-1236) was sequenced among 56 Korean wild boars. In total, 25 haplotypes were identified and classified into four distinct subgroups (K1 to K4) based on Bayesian phylogenetic analysis using Markov chain Monte Carlo methods. An extended analysis, adding 139 wild boars sampled worldwide, confirmed that Korean wild boars clearly belong to the Asian wild boar cluster. Unexpectedly, the Myanmarese/Thai wild boar population was detected on the same branch as Korean wild boar subgroups K3 and K4. A parsimonious median-joining network analysis including all Asian wild boar haplotypes again revealed four maternal lineages of Korean wild boars, which corresponded to the four Korean wild boar subgroups identified previously. In an additional analysis, we supplemented the Asian wild boar network with 34 Korean and Chinese domestic pig haplotypes. We found only one haplotype, C31, that was shared by Chinese wild, Chinese domestic and Korean domestic pigs. In contrast to our expectation that Korean wild boars contributed to the gene pool of Korean native pigs, these data clearly suggest that Korean native pigs would be introduced from China after domestication from Chinese wild boars.
Keywords
D-loop; domestication; Korean wild boar; network; phylogeny; phylogeography;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X., and Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497   DOI   ScienceOn
2 Ruvinsky, A., and Rothschild, M.F. (1998). Systematics and evolution of the pig. In Handbook of The Genetics of the Pig, M.F. Rothschild, and A. Ruvinsky, eds. (Oxfordshire, CAB International), pp. 1-16
3 Schneider, S., and Excoffier, L. (1999). Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 152, 1079-1089
4 Swofford, D.L. (2003). PAUP*. Phylogenetic analysis using parsimony (*and other methods), Version 4. Sinauer Associates
5 Tavare, S. (1986). Some probabilistic and statisical problems on the analysis of DNA sequences. Lectures. Lect. Math. Life. Sci. 17, 57-86
6 Yang, J., Wang, J., Kijas, J., Liu, B., Han, H., Yu, M., Yang, H., Zhao, S., and Li, K. (2003). Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs. J. Hered. 94, 381-385   DOI   ScienceOn
7 Fang, M., Hu, X., Jiang, T., Braunschweig, M., Hu, L., Du, Z., Feng, J., Zhang, Q., Wu, C., and Li, N. (2005). The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers. Anim. Genet. 36, 7-13   DOI   ScienceOn
8 Goudet, J., Raymond, M., Meeüs, T., and Rousset, F. (1996). Testing differentiation in diploid populations. Genetics 144, 1933-1940   PUBMED
9 Lin, C.S., Sun, Y.L., and Liu, C.Y. (1999). Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene 236, 107-114   DOI   ScienceOn
10 Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press
11 Rogers, A. (1995). Genetic evidence for a Pleistocene population explosion. Evolution 49, 608-615   DOI   ScienceOn
12 Brown, W.M., George, Jr. M., and Wilson, A.C. (1979). Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967-1971   DOI   ScienceOn
13 Choi, D.K. (2003). Understanding the Earth. Seoul National University press
14 Larson, G., Albarella, U., Dobney, K., Rowley-Conwy, P., Schibler, J., Tresset, A., Vigne, J.D., Edwards, C.J., Schlumbaum, A., Dinu, A., et al. (2007). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc. Natl. Acad. Sci. USA 104, 15276-15281   DOI   ScienceOn
15 Thompson, J.D., Higgins, D.G., and Gibson, T.I. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680   DOI   ScienceOn
16 Watanobe, T., Ishiguro, N., Nakano, M., Matsui, A., Hongo, H., Yamazaki, K., and Takahashi, O. (2004) Prehistoric Sado Island populations of Sus scrofa distinguished from contemporary Japanese wild boar by ancient mitochondrial DNA. Zoolog. Sci. 21, 219-228   DOI   ScienceOn
17 Epstein, H. (1984). Pig. In handbook of evolution of domesticated animals, I.L. Mason, eds. (London : Longman), pp. 145-162
18 Kijas, J.M.H., and Andersson, L. (2001). A phylogenetic study of the domestic pig estimated from the near-complete mtDNA genome. J. Mol. Evol. 52, 302-308   DOI   PUBMED
19 Weir, B.S. (1996). Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates
20 Kawamura, Y. (2007). Last glacial and Holocene land mammals of the Japanese islands : their fauna, extinction and immigration. The Quaternary Research 46, 171-177   DOI
21 Birren, B., Green, E.D., Klapholz, S., Myers, R.M., and Roskams, J. (1997). Genome Analysis: A Laboratory Manual (USA: Cold Spring Harbor Laboratory Press)
22 Dobson, M., and Yoshinari, K. (1998). Origin of the Japanese land mammal fauna: Allocation of extant species to historically-based categories. Daiyonki Kenkyu. 37, 385-395   DOI
23 Fu, Y.X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915-925   PUBMED
24 Ronquist, F., and Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574   DOI   ScienceOn
25 Herre, W., and Rohrs, M. (1977). Zoological considerations on the origins of farming and domestication. In Handbook of Origins of Agriculture, C.A. Reed, eds. (Mouton : The Hague), pp. 245-279
26 Li, S.J., Yang, S.H., Zhao, S.H., Fan, B., Yu, M., Wang, H.S., Li, M.H., Liu, B., Xiong, T.A., and Li, K. (2004). Genetic diversity analyses of 10 indigenous Chinese pig populations based on 20 microsatellites. J. Anim. Sci. 82, 368-374   DOI   PUBMED
27 Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160-174   DOI   PUBMED
28 Hongo, H., Ishiguro, N., Watanobe, T., Shigehara, N., Anezaki, T., Long, V.T., Bihn, D.V., Tien, N.T., and Nam, N.H. (2002). Variation in mitochondrial DNA of Vietnamese pigs: relationships with Asian Domestic pigs and Ryukyu wild boars. Zool. Sci. 19, 1329-1335   DOI   ScienceOn
29 Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47-50   PUBMED
30 Okumura, N., Ishiguro, N., Nakano, M., Hirai, K., Matsui, A., and Sahara, M. (1996). Geographic population structure and sequence divergence in the mitochondrial DNA control region of the Japanese wild boar (Sus scrofa leucomystax), with reference to those of domestic pigs. Biochem. Genet. 34, 179-189   DOI   PUBMED   ScienceOn
31 Giuffra, E., Kijas, J.M.H., Amarger, V., Carlborg, O., Jeon, J.T., and Andersson, L. (2000). The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785-1791   PUBMED
32 Kim, K.I., Lee, J.H., Li, K., Zhang, Y.P., Lee, S.S., Gongora, J., and Moran, C. (2002). Phylogenetic relationships of Asian and European pig breeds determinated by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19-25   DOI   ScienceOn
33 Norton, C.J. (2000). The current state of Korean paleoanthropology. J. Hum. Evol. 38, 803-825   DOI   PUBMED   ScienceOn
34 Bandelt, H.J., Forster, P., and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48   DOI   PUBMED   ScienceOn
35 Bokonyi, S. (1974). History of domestic mammals in central and Eastern Europe. Academiai Kiado
36 Larson, G., Dobney, K., Albarella, U., Fang, M., Matisoo-Smith, E., Robins, J., Lowden, S., Finlayson, H., Brand, T., Willerslev, E., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618-1621   DOI   PUBMED   ScienceOn
37 Xia, X., and Xie, Z. (2001). DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92, 371- 373   DOI   ScienceOn
38 Excoffier, L. (2004). Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infiniteisland model. Mol. Ecol. 13, 853-864   DOI   PUBMED   ScienceOn
39 Naya, Y., Horiuchi, M., Ishiguro, N., and Shinagawa, M. (2003). Bacteriological and genetic assessment of game meat from Japanese wild boars. J. Agric. Food. Chem. 51, 345-349   DOI   ScienceOn
40 Watanobe, T., Ishiguro, N., and Nakano, M. (2003). Phylogeography and population structure of the Japanese wild boar Sus scrofa leucomystax: mitochondrial DNA variation. Zoolog. Sci. 20, 1477- 1489   DOI   ScienceOn
41 Huelsenbeck, J.P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754-755   DOI   ScienceOn