• Title/Summary/Keyword: Width-to-Height ratio

Search Result 485, Processing Time 0.029 seconds

Identification of Ruditapes philippinarum and Meretrix lusoria Larvae Using Single Cell PCR Analysis and Microscopic Observation (Single Cell PCR과 현미경을 통한 바지락 및 백합 유생의 동정)

  • Jung, Seung-Won;Kim, Chang-Soo;Yoo, Jae-Won;Kim, Young-Ok;Lee, Jin-Hwan;Hong, Jae-Sang
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.247-254
    • /
    • 2010
  • Single cell PCR analysis and light and scanning electron microscopic techniques were utilized to identify free living bivalve larvae in the coastal waters of Tae-an, on the west coast of Korea. Through DNA sequencing, venerid clam larvae were isolated and identified as Ruditapes philippinarum (99% similarity) and Meretrix lusoria (99%). Under microscopic observation, the D-veliger stage of R. philippinarum exhibited symmetrical shoulder angles and an elliptical ventral form. In contrast, M. lusoria displayed asymmetrical shoulder angles and a round ventral form in the umbonal stage. Size of the R. philippinarum larvae was $156{\pm}22{\mu}m$ in length, $126{\pm}12{\mu}m$ in height, $92{\pm}14{\mu}m$ in width with a length: height ratio of 1.23. Meretrix lusoria was $202{\pm}44{\mu}m$ in length, $161{\pm}35{\mu}m$ in height, $96{\pm}38{\mu}m$ in width with a length: height ratio of 1.25. Experimental results indicate that morphological and molecular characteristics provide evidence for the larval identification of these two venerid clam larvae species in nature.

A HIGH-ASPECT-RADIO COME ACTUATOR USING UV-LIGA SURFACE MICROMACHINING AND (110) SILICON BULK MICORMACHINING (UV-LIGA 표면 미세 가공 기술과 (110) 실리콘 몸체 미세 가공 기술을 이용한 큰 종횡비의 빗모양 구동기 제작에 관한 연구)

  • Kim, Seong-Hyeok;Lee, Sang-Hun;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.132-139
    • /
    • 2000
  • This paper reports a novel micromachining process based on UV-LIGA process and (110) silicon anisotropic etching for fabrication of a high-aspect-ratio comb actuator. The comb electrodes are fabricated by (110) SILICON comb structure considering the etch-rate-ratio between (110) and (111) planes and lateral etch rate of a beam-type structure. The fabricated structure was$ 400\mum \; thick\; and\; 18\mum$ wide comb electrodes separated by $7\mim$ so that the height-gap ratio was about 57. Also considering resonant frequency of the comb actuator and the frequency-matching between sensing and driving mode for gyroscope application, we designed the number, width, height and length of the spring structures. Electroplated gold springs on both sides of the seismic mass were $15\mum\; wide,\; 14\mum\; thick\; and \; 500\mum$ long. The fabricated comb actuator had resonant frequency ay 1430Hz, which was calculated to be 1441Hz. The proposed fabrication process can be applicable to the fabrication of a high-aspect-ratio comb actuator for a large displacement actuator and precision sensors. Moreover, this combined process enables to fabricate a more complex structure which cannot be fabricate only by surface or bulk micromachining.

  • PDF

Development of Slender Aerodynamic Girder for Suspension Bridges (현수교 세장 내풍 단면의 개발)

  • Kwon, Soon-Duck;Lee, Myeong-Jae;Cho, Eukyung;Lee, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.241-256
    • /
    • 2010
  • This study intends to develop an aerodynamic girder for suspension bridge with width corresponding to 1/70 of the main span length. In the first step of present study, parametric study for the effects of major structural properties on aerodynamic stability of bridges was performed. The span length and natural frequency of bridges were found to be free from girder width, girder height, and aspect ratio of width to height. The empirical equation according to confidence interval was proposed to estimate the natural frequencies of bridges from span length. From the sensitivity analysis, it was revealed that the torsional frequency was dominant parameter among various structural properties that affected flutter velocity mostly. The final aerodynamic bridge section which satisfied the flutter criteria was found from section wind tunnel tests for 30 cross sectional models. The aerodynamic stability of the developed cross section was verified by multimode flutter analysis. The present economical cross section can be used for long span suspension bridge.

Effects of Discrete Rib-Turbulators on Heat/Mass Transfer Augmentation in a Rectangular Duct (사각 덕트 내부 열전달 향상을 위한 요철의 단락 효과)

  • Kwon, Hyuk-Jin;Wu, Seong-Je;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.744-752
    • /
    • 2000
  • The influence of arrangement and length of discrete ribs on heat/mass transfer and friction loss is investigated. Mass transfer experiments are conducted to obtain the detailed local heat/mass transfer information on the ribbed wall. The aspect ratio (width/height) of the duct is 2.04 and the rib height is one tenth of the duct height, such that the ratio of the rib height to hydraulic diameter is 0.0743. The ratio of rib-to-rib distance to rib height is 10. The discrete ribs were made by dividing each continuous rib into 2, 3 or 5 pieces and attached periodically to the top and the bottom walls of the duct with a parallel orientation The combined effects of rib angle and length of the discrete ribs on heat/mass transfer ae considered for the rib angles $({\alpha})\;of\;90^{\circ}\;and\;45^{\circ}$. As the number of the discrete ribs increases, the uniformity of the heat/mass transfer distributions increases. For $(\alpha})=90^{\circ}$, the heat/mass transfer enhancement with the discrete ribs is remarkable, while the heat/mass transfer performances are slightly higher than that of the transverse continuous ribs due to the accompanied high friction loss penalty. For $(\alpha})=90^{\circ}$, the average heat/mass transfer coefficients and the heat/mass transfer performances decrease slightly with the discrete ribs compared to the case of the angled continuous ribs.

Gravure off-set printing method for the high-efficiency multicrystalline-silicon solar cell (Gravure off-set 인쇄법을 적용한 고효율 다결정 실리콘 태양전지)

  • Kim, Dong-Ju;Kim, Jung-Mo;Bae, So-Ik;Jun, Tae-Hyun;Song, Ha-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.293-298
    • /
    • 2011
  • The most widely used method to form an electrode in industrial solar cells are screen printing. Screen printing is characterized by a relatively simple and well-known production sequence with high throughput rates. However the method is difficult to implement a fine line width of high-efficiency solar cells can not be made. The open circuit voltage(Voc) and the short circuit current density(Jsc) and fill factor(FF) need to be further improved to increase the efficiency of silicon solar cells. In this study, gravure offset printing method using the multicrystalline-silicon solar cells were fabricated. Gravure off-set printing method which can print the fine line width of finger electrode can have the ability reduce the shaded area and increase the Jsc. Moreover it can make a high aspect ratio thereby series resistance is reduced and FF is increased. Approximately $50{\mu}m$ line width with $35{\mu}m$ height was achieved. The efficiency of gravure off set was 0.7% higher compare to that of scree printing method.

  • PDF

Effect of Intercropping Ratio on the Cherry Tomato with Basil on the Growth, Physiological, and Productivity Parameters on the Rooftop in Urban Agriculture (옥상 도시농업에서 방울토마토(Lycopersicon esculentum)와 바질(Ocimum basilicum)간의 공영식재가 생육, 생리, 생산성에 미치는 영향)

  • Ju, Jin-Hee;Song, Hee-Yeon;Oh, Deuk-Kyun;Park, Sun-Yeong;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.30 no.9
    • /
    • pp.709-717
    • /
    • 2021
  • This study evaluated the growth, physiological responses and productivity based on the intercropping ratio of cherry tomato (Lycopersicon esculentum L.) with basil (Ocimum basilicum L.). on the rooftops to determine out the efficient ratio in urban agriculture. From April to September 2019, an experiment was conducted on the rooftop of Konkuk University Glocal Campus. Cherry tomato and basil were selected as companion plants for eco-friendly urban agriculture on the rooftops. Each plot was created with a width of 100 cm, length of 100 cm, and height of 25 cm. After installing drainage and waterproof layers from bottom to top, substrate was laid out with a height of 20 cm. Intercropping ratio was consisted of a single tomato plant (TC), 2:1 tomato to basil (T2B1), 1:1 tomato to basil (T1B1), 1:2 tomato to basil 2 (T1B2), and a single basil plant (BC), were conducted using a randomized complete plot design with five treatments and three replication (a total 15 plots). Measurements were divided into growth, physiological responses, and productivity parameters, and detailed items were investigated and analyzed by classifying them into plant height, leaf length, leaf width, number of leaves, root length, root collar caliper, chlorophyll contents, fresh weight, dry weight, number of fruit, fruit caliper, fruit weight, and sugar content. Comparative analyses of cherry tomato with basil plants by intercropping ratio, growth, physiological, and productivity responses are determined to be efficient when the ratio of cherry tomato to basil ratio is 2:1 or 1:1.

Effect of Ridge Height on Growth and Tuber Yield in Cynanchum auriculatum Royle ex Wight (두둑높이가 넓은잎큰조롱의 생육 및 근수량에 미치는 영향 )

  • Nam, Sang-Young;Kim, In-Jae;Kim, Min-Ja;Rho, Chang-Woo;Lee, Jung-Gwan;Yun, Tae;Min, Kyeong-Beom
    • Korean Journal of Plant Resources
    • /
    • v.22 no.4
    • /
    • pp.299-303
    • /
    • 2009
  • This study was conducted to increase the productivity and quality of C. auriculatum Royle ex Wight according to the various ridge height. The higher ridge height increased the vine length, leaf length, leaf width, leaf number, chlorophyll content, and leaf dry weight; however, the lower ridge height increased the stem diameter and branch numbers. The tuber number and length was increased at less than 20cm of ridge height, but the overall growth was retarded in the treatment of over 20cm ridge height. The tuber diameter was also thicker in the lower ridge. The rootlet ratio among the non-commercial tuber was increased in the 20cm and 30 cm ridge, and the decayed tuber ratio was increased in the lower ridge. The yield of tuber has increased with 3% and 11% in the 20cm and 30cm ridge height compared to 10cm ridge(515kg/10a).

3D Unsteady Numerical Analysis to Design Defrosting System of Automotive Windshield Glass (자동차 전면유리의 제상시스템 설계를 위한 3차원 비정상 수치해석)

  • Kang, Shin-Hyung;Lee, Jin-Ho;Byun, Ju-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.1-8
    • /
    • 2007
  • The present research is based upon the numerical analysis of a car windshield in order to represent the optimum design guide to improve the overall defrosting performance of the system. First, the control factors that highly affect the defrosting performance of a car windshield are chosen and afterwards, the optimum variables of each control factor are extracted out to analyze its performance. The main control factors for this research are respectively, the air injection angle of a defroster nozzle, the height of a nozzle outlet, and the ratio of the width to the height of a nozzle outlet. For such case when the air inlet angle is relatively small, the flow near the vicinity of the inner face of a windshield tends to expand. As a consequence, the heat transfer rate through the windshield decreases. Also, the height of a nozzle outlet is recommended to maintain its size to minimum. However, when the ratio mentioned before is designed less than unity, the defrosting performance decreases.

Large Eddy Simulation of Turbulent Channel Flow Using Inhomogeneous Filter (비균질 필터를 사용한 난류 채널 유동의 Large Eddy Simulation)

  • Lee, Sang-Hwan;Kim, Kwang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1022-1031
    • /
    • 2004
  • The commutation errors by the filtering process in the large eddy simulation are considered. It is compared the conventional filter with the inhomogeneous filter that is devised to reduce the commutation errors. The weighting factor of the inhomogeneous filter suggested by Vasilyev is adopted. Also, using the optimizing function that estimates test filter width to eliminate the dissipations in the region excluding the vicinity of the wall, the flow patterns are analyzed. It is evaluated in simulations of the turbulent channel flow at Reynolds number of 1020, based on friction velocity and channel half height. Results show that the commutation errors can be significantly reduced by using the inhomogeneous filter and the optimized test filter width.

Improving the seismic behavior of diagonal braces by developing a new combined slit damper and shape memory alloys

  • Vafadar, Farzad;Broujerdian, Vahid;Ghamari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.107-120
    • /
    • 2022
  • The bracing members capable of active control against seismic loads to reduce earthquake damage have been widely utilized in construction projects. Effectively reducing the structural damage caused by earthquake events, bracing systems equipped with retrofitting damper devices, which take advantage of the energy dissipation and impact absorption, have been widely used in practical construction sites. Shape Memory Alloys (SMAs) are a new generation of smart materials with the capability of recovering their predefined shape after experiencing a large strain. This is mainly due to the shape memory effects and the superelasticity of SMA. These properties make SMA an excellent alternative to be used in passive, semi-active, and active control systems in civil engineering applications. In this research, a new system in diagonal braces with slit damper combined with SMA is investigated. The diagonal element under the effect of tensile and compressive force turns to shear force in the slit damper and creates tension in the SMA. Therefore, by creating shear forces in the damper, it leads to yield and increases the energy absorption capacity of the system. The purpose of using SMA, in addition to increasing the stiffness and strength of the system, is to create reversibility for the system. According to the results, the highest capacity is related to the case where the ratio of the width of the middle section to the width of the end section (b1/b) is 1.0 and the ratio of the height of the middle part to the total height of the damper (h1/h) is 0.1. This is mainly because in this case, the damper section has the highest cross-section. In contrast, the lowest capacity is related to the case where b1/b=0.1 and the ratio h1/h=0.8.