• Title/Summary/Keyword: Wideband process

Search Result 105, Processing Time 0.025 seconds

Design of an Advanced CMOS Power Amplifier

  • Kim, Bumman;Park, Byungjoon;Jin, Sangsu
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.63-75
    • /
    • 2015
  • The CMOS power amplifier (PA) is a promising solution for highly-integrated transmitters in a single chip. However, the implementation of PAs using the CMOS process is a major challenge because of the inferior characteristics of CMOS devices. This paper focuses on improvements to the efficiency and linearity of CMOS PAs for modern wireless communication systems incorporating high peak-to-average ratio signals. Additionally, an envelope tracking supply modulator is applied to the CMOS PA for further performance improvement. The first approach is enhancing the efficiency by waveform engineering. In the second approach, linearization using adaptive bias circuit and harmonic control for wideband signals is performed. In the third approach, a CMOS PA with dynamic auxiliary circuits is employed in an optimized envelope tracking (ET) operation. Using the proposed techniques, a fully integrated CMOS ET PA achieves competitive performance, suitable for employment in a real system.

A Wideband Interferometric Wavelength Shift Demodulator of Fiber Bragg Grating Strain Sensor

  • Song, Min-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.64-68
    • /
    • 1999
  • The performance of a fiber Bragg grating strain sensor constructed with 3$\times$3 coupler is investigated. A 3$\times$3 coupler Mach-Zehnder (M/Z) interferometer is used as wavelength discriminator, interrogating strain-induced Bragg wavelength shifts. Two quadrature-phase-shifted intensities are synthesized from the as-coupled interferometer outputs, and digital arctangent demodulation and phase unwrapping algorithm are applied to extract the phase information proportional to strain. Due to the linear relation between the input strain and the output of quadrature signal processing, signal-fading problems eliminated. In the experiment, a fiber grating that was surface adhered on an aluminum beam was strained in different ways, and the photodetector signals were transferred and processed in a computer-controlled processing unit. A phase recovery fo 7.8$\pi$ pk-pk excursion, which corresponds to ~650$\mu$strain pk-pk of applied strain, was demonstrated. The sensor system was stable over the environmental intensi쇼 perturbations because of the self-referencing effect in the demodulation process.

A CMOS Wideband RF Energy Harvester Employing Tunable Impedance Matching Network for Video Surveillance Disposable IoT Applications (가변 임피던스 매칭 네트워크를 이용한 영상 감시 Disposable IoT용 광대역 CMOS RF 에너지 하베스터)

  • Lee, Dong-gu;Lee, Duehee;Kwon, Kuduck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.304-309
    • /
    • 2019
  • This paper presents a CMOS RF-to-DC converter for video surveillance disposable IoT applications. It widely harvests RF energy of 3G/4G cellular low-band frequency range by employing a tunable impedance matching network. The proposed converter consists of the differential-drive cross-coupled rectifier and the matching network with a 4-bit capacitor array. The proposed converter is designed using 130-nm standard CMOS process. The designed energy harvester can rectify the RF signals from 700 MHz to 900 MHz. It has a peak RF-to-DC conversion efficiency of 72.25%, 64.97%, and 66.28% at 700 MHz, 800 MHz, and 900 MHz with a load resistance of 10kΩ, respectively.

Real-time transmission of 3G point cloud data based on cGANs (cGANs 기반 3D 포인트 클라우드 데이터의 실시간 전송 기법)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1482-1484
    • /
    • 2019
  • We present a method for transmitting 3D object information in real time in a telepresence system. Three-dimensional object information consists of a large amount of point cloud data, which requires high performance computing power and ultra-wideband network transmission environment to process and transmit such a large amount of data in real time. In this paper, multiple users can transmit object motion and facial expression information in real time even in small network bands by using GANs (Generative Adversarial Networks), a non-supervised learning machine learning algorithm, for real-time transmission of 3D point cloud data. In particular, we propose the creation of an object similar to the original using only the feature information of 3D objects using conditional GANs.

Power Spectral Density of Antipodal Ultra Wideband Signal (Antipodal 초광대역(UWB) 신호의 전력 스펙트럼 밀도 분석)

  • Kim, Jong Han;Lee, Jung Suk;Kim, Yoo Chang;Kim, Won Hoo;Kim, Jung Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • In conventional Ultra Wide Band(UWB) system, it uses Pulse Positioning Modulation Method to modulate data signal. In this paper, however, we derive power spectral density characteristic of time hopped antipodal signal using stochastic process. UWB signal employes Gaussian monopulse and Rayleigh monopulse which pulse width is 0.5 nsec and interval is 5 nsec. But comb line which produces unintentionally could be evidently reduced by the time hopped code, so this code be used to channelize for multiple access and minimize to different communication system.

  • PDF

High Performance Millimeter-Wave Image Reject Low-Noise Amplifier Using Inter-stage Tunable Resonators

  • Kim, Jihoon;Kwon, Youngwoo
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.510-513
    • /
    • 2014
  • A Q-band pHEMT image-rejection low-noise amplifier (IR-LNA) is presented using inter-stage tunable resonators. The inter-stage L-C resonators can maximize an image rejection by functioning as inter-stage matching circuits at an operating frequency ($F_{OP}$) and short circuits at an image frequency ($F_{IM}$). In addition, it also brings more wideband image rejection than conventional notch filters. Moreover, tunable varactors in L-C resonators not only compensate for the mismatch of an image frequency induced by the process variation or model error but can also change the image frequency according to a required RF frequency. The implemented pHEMT IR-LNA shows 54.3 dB maximum image rejection ratio (IRR). By changing the varactor bias, the image frequency shifts from 27 GHz to 37 GHz with over 40 dB IRR, a 19.1 dB to 17.6 dB peak gain, and 3.2 dB to 4.3 dB noise figure. To the best of the authors' knowledge, it shows the highest IRR and $F_{IM}/F_{OP}$ of the reported millimeter/quasi-millimeter wave IR-LNAs.

Design of a Wide-Band CMOS VCO With Reduced Variations of VCO Gain and Frequency Steps for DTV Tuner Applications (VCO 이득 변화와 주파수 간격 변화를 줄인 DTV용 광대역 CMOS VCO 설계)

  • Ko, S.O.;Sim, S.M.;Sho, H.T.;Kim, C.K.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.217-218
    • /
    • 2008
  • Since the digital TV signal band is very wide ($54{\sim}806MHz$), the VCO used in the frequency synthesizer must also have a wide frequency tuning range. Multiple LC VCOs have been used to cover such wide frequency band. However, the chip area increases due to the increased number of integrated inductors. A general method for achieving both reduced VCO gain(Kvco) and wide frequency band is to use the switched-capacitor bank LC VCO. In this paper, a scheme is proposed to cover the full band using only one VCO. The RF VCO block designed using a 0.18um CMOS process consists of a wideband LC VCO with reduced variation of VCO gain and frequency steps. Buffers, divide-by-2 circuits and control logics the simulation results show that the designed circuit has a phase noise at 100kHz better than -106dBc/Hz throughout the signal band and consumes $9.5{\sim}13mA$ from a 1.8V supply.

  • PDF

A CMOS Envelope Tracking Power Amplifier for LTE Mobile Applications

  • Ham, Junghyun;Jung, Haeryun;Kim, Hyungchul;Lim, Wonseob;Heo, Deukhyoun;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.235-245
    • /
    • 2014
  • This paper presents an envelope tracking power amplifier using a standard CMOS process for the 3GPP long-term evolution transmitters. An efficiency of the CMOS power amplifier for the modulated signals can be improved using a highly efficient and wideband CMOS bias modulator. The CMOS PA is based on a two-stage differential common-source structure for high gain and large voltage swing. The bias modulator is based on a hybrid buck converter which consists of a linear stage and a switching stage. The dynamic load condition according to the envelope signal level is taken into account for the bias modulator design. By applying the bias modulator to the power amplifier, an overall efficiency of 41.7 % was achieved at an output power of 24 dBm using the 16-QAM uplink LTE signal. It is 5.3 % points higher than that of the power amplifier alone at the same output power and linearity.

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability

  • Woo, Doo Hyung;Nam, Ilku;Lee, Ockgoo;Im, Donggu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.499-504
    • /
    • 2017
  • A UHF CMOS variable gain low-noise amplifier (LNA) is designed for mobile digital TV tuners. The proposed LNA adopts a feedback topology to cover a wide frequency range from 474 to 868 MHz, and it supports the notch filter function for the interoperability with the GSM terminal. In order to handle harmonic distortion by strong interferers, the gain of the proposed LNA is step-controlled while keeping almost the same input impedance. The proposed LNA is implemented in a $0.11{\mu}m$ CMOS process and consumes 6 mA at a 1.5 V supply voltage. In the measurement, it shows the power gain of greater than 16 dB, NF of less than 1.7 dB, and IIP3 of greater than -1.7 dBm for the UHF band.

Wide band prototype feedhorn design for ASTE focal plane array

  • Lee, Bangwon;Gonzales, Alvaro;Lee, Jung-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2016
  • KASI and NAOJ are making collaborating efforts to implement faster mapping capability into the new 275-500 GHz Atacama Submillimeter Telescope Experiment focal plane array (FPA). Feed horn antenna is one of critical parts of the FPA. Required fractional bandwidth is almost 60 % while that of traditional conical horn is less than 50 %. Therefore, to achieve this wideband performance, we adopted a horn of which the corrugation depths have a longitudinal profile. A profiled horn has features not only of wide bandwidth but also of shorter length compared to a linear-tapered corrugated horn, and lower cost fabrication with less error can be feasible. In our design process the flare region is represented by a cubic splined curve with several parameters. Parameters of the flare region and each dimension of the throat region are optimized by a differential evolution algorithm to keep >20 dB return loss and >30 dB maximum cross-polarization level over the operation bandwidth. To evaluate RF performance of the horn generated by the optimizer, we used a commercial mode matching software, WASP-NET. Also, Gaussian beam (GB) masks to far fields were applied to give better GB behavior over frequencies. The optimized design shows >23 dB return loss and >33 dB maximum cross-polarization level over the whole band. Gaussicity of the horn is over 96.6 %. The length of the horn is 12.5 mm which is just 57 % of the ALMA band 8 feed horn (21.96 mm).

  • PDF