• Title/Summary/Keyword: Wideband antenna

Search Result 414, Processing Time 0.029 seconds

Design of a Broadband Receiving Active Dipole Antenna Using an Equivalent Model (등가 모델을 이용한 광대역 수신용 능동 다이폴 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • In the VHF range, active antennas are widely used for wideband applications due to their small size. Active antenna consists of antenna elements and amplifiers, which are directly connected to each other. Gain and noise-figure characteristics are very important for good sensitivity performance, because it is located at the front end of a receiving system. In this study, we developed an active dipole antenna with 5:1 bandwidth(100${\sim}$500 MHz), which consists of a dipole antenna and a P-HEMT amplifier. To obtain required performances, the antenna and the amplifier should be designed simultaneously. In order for that, we introduced an equivalent port concept to model the 1-port dipole antenna as an equivalent 2-port system. Using the proposed equivalent port, the performance of the active dipole antenna was simulated by the ADS. In order to measure the gain and noise-figure characteristics of the antenna, we utilized the same concept of the two-port equivalent impedance model. The measurement results for typical gain, NF and VSWR in the required frequency band were 8dBi, 9dB and 1.7:1, respectively. The radiation patterns at the principal planes were same as the typical radiation pattern of a dipole antenna. By comparing the simulation results with measured ones, it is confirmed that the proposed methods works well.

Analysis of IR-UWB Tapered Slot Antenna Radiation Pattern using the Group delay and Fidelity (군 지연 및 충실도를 이용한 IR-UWB용 테이퍼 슬롯 안테나 방사패턴 분석)

  • Kim, Keun-Yong;Ko, Yong-Mok;Park, Kyoung-Jin;Kang, Een-Kyun;Lee, Dae-Woo;Park, Jong-Hyun;Ra, Keuk-Whan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.308-315
    • /
    • 2013
  • In this paper, Tapered slot antenna of IR-UWB was Designed and fabricated using HFSS and we suggest the beam width of the broadband antenna using group-delay and fidelity. For this purpose, acquired data from the Network Analyzer was analyzed in the time domain by using the chirp-Z transform and Simulation was conducted and confirmed with the CST microwave studio. Analysis of the antenna radiation pattern is the antenna separation at intervals of 0.5 metres and then transmit antenna is fixed and the receiving antenna 360 degree intervals of 10 degree each, The results of the analysis are as follows, and analyzer of the fidelity of the antenna's performance. An analysis of more than 90 percent of the cases is less than ${\pm}40$ degrees in good fidelity, more than 90% less than ${\pm}40$ degrees and lowe fidelity. In conclusion, Analysis of Beam width of wideband antenna with more precise is possible through using these radiation pattern using fidelity.

Development of Wideband Spatial Combined High Power Amplifier (광대역 공간 결합 고출력 전력증폭기 개발)

  • Lee, Ho-Seon;Park, Kwan-Young;Kong, Tong-Ook;Chun, Jong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.286-297
    • /
    • 2017
  • This paper is a study of 6~18 GHz wideband high power amplifier which is composed of 10 single amplifier and coaxial type spatial power combiner. The property of this spatial power combiner is on a similar principle to antipodal antenna radiation mechanism. Therefore, the key structure of proposed spatial power combiner is the antipodal finline PCB board and the finline curve shape is numerically synthesized by using Klopfensein's optimum impedance taper. The measured CW output power of spatial combined high power amplifier is nearly 50 W. In conclusion we prove the good combining performance between the spatial power combiner and 10 single amplifier over 6~18 GHz frequency ranges. Also, we developed the key component PA and MFC MMIC which controls the phase and gain of the each amplifier, The main characteristic of MFC MMIC is to maximize combining efficiency of power amplifier.

Design of Fractal Structure Wideband Antenna for 4G IMT-Advanced AccessPoint Applications (4세대 이동통신 Accesspoint용 Fractal구조 광대역 안테나 설계)

  • Kim, Dong-Hwan;Kim, Gab-Gi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this paper, an AccessPoint compact microstrip patch antenna was designed by using L-shaped feeding structure of a Fractal Structure and the compact antenna can be obtained by the rare formed presence of the resonance flow which is called "Crossed-Diagonal". CST's MicroWave5.0 was used for the design. As the operating characteristics of the patch antenna, it showed the characteristic of 1031 [MHz] or 29.4% in the range of 3.202 [GHz] ~ 4.233 [GHz] when an input return loss is less -10 [dB] and VSWR 2:1, also as it is in this paper, we got simulation results such as, gains of the E-plane and H-plane are 8.7 [dBi] and 8.6 [dBi] for this is the single patch, and 3 [dB] beamwidth is $43.9^{\circ}$ at E-plane and $78.7^{\circ}$ at H-plane.

Compact MIMO Antenna with Wide-Band Isolation and Ground Mode Resonance for Smart Glasses (그라운드 모드의 공진을 이용한 광대역 격리도를 가지는 스마트 안경용 소형 MIMO 안테나)

  • Ryu, Jongin;Kim, Hyeongdong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.817-820
    • /
    • 2018
  • In this letter, a compact multiple-input multiple-output(MIMO) antenna design for a 2.4 GHz wireless local area network(WLAN) band is proposed for use in smart glasses. To miniaturize the MIMO antenna system, a ground plane is employed within the antenna and a T-shaped ground is proposed. To achieve wideband isolation, dual resonance is formed by the ground mode. One resonance is created by the T-shaped ground and the second resonance is created by adding a slot and a capacitor between the two feed lines. The measurements show that the reflection coefficient characteristic was less than -5.1 dB, whereas the isolation obtained was less than -20 dB. The diversity performance was evaluated using the measured two-dimensional radiation patterns, and the envelope correlation coefficient(ECC) values achieved in the target band(2.4~2.5 GHz) were less than 0.1.

Sectorial Form UWB Antenna with a CPW-fed Uni-Planar (CPW 급전 단일 평면 부채꼴형 UWB 안테나 설계 및 제작)

  • Kim, Nam;Son, Gui-Bum;Park, Sang-Myeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.305-314
    • /
    • 2007
  • In this paper, we suggested a CPW-fed UWB antenna with uni-planar sectoral structure. The area where radiation device face ground is designed to have the shape of tapered slot based on exponential function. We modified a rectangular bow-tie dipole structure antenna and thus formed a multi-resonant mode. From this, we expanded the impedance bandwidth and made a feature satisfying VSWR of less than 2 between $3.1\sim10.6GHz$. The test result showed that the return loss less than -10 dB was met in the full-band UWB system and maximum gain of $0.9\sim3.1dB$ was made with the half-power beamwidth of $40.1\sim89.9^{\circ}$ on XY plane(Theta, $Phi=90^{\circ}$) and the full band. By using CPW-fed structure with no ground on the back of the substrate, the suggested antenna is easy to design and its miniaturization is also possible.

Log-Periodic Bow-tie Dipole Array(LPBDA) Antenna for UWB Communications (UWB 통신용 대수 주기 보우타이 다이폴 배열 안테나)

  • Yeo, Jun-Ho;Lee, Jong-Ig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4095-4100
    • /
    • 2011
  • In this paper, a log periodic bow-tie dipole array (LPBDA) antenna for UWB communications is investigated. Bow-tie shaped dipole elements are used instead of general dipole elements for LPDA antennas and the input reflection coefficient and realized gain characteristics of the LPBDA as a function of a flare angle are analyzed. It turns out that as the flare angle of the bow-tie dipole elements is increased, the lowest operating frequency is shifted toward lower frequency and the operating frequency band is increased, but the average gain is decreased. However, the gain variation of the LPBDA is much decreased and the front-back ratio is improved compared to the LPDA. Standard LPDA and LPBDA with a flare angle of 13 degrees are fabricated on an FR4 substrate with a dielectric constant of 4.4 and a thickness of 1.6 mm. Measured gain for the LPDA ranges from 4 to 6.5 dBi at 3.1 to 10.6 GHz band, while that for the LPBDA is in the range of 4.2 to 5 dBi.

Design of a Planar LPDA Antenna with Light-Weight Supporting Structure for Installing on an Aircraft (항공기 탑재용 경량화 지지 구조를 갖는 평면 LPDA 안테나 설계)

  • Park, Young-Ju;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • This paper proposes a planar Log-Periodic Dipole Array(LPDA) antenna with light-weight supporting structure for installing on an aircraft. The proposed antenna is designed by applying a planar skeleton supporting structure that has light-weight for an aircraft and is capable of withstanding structural vibration. The material of the planar skeleton supporting structure is a Polyether ether ketone(Peek) which has excellent characteristics on strength and temperature. The proposed antenna is fabricated by attaching the radiating elements of the LPDA on both sides of the supporting structure. The changed input impedance due to the dielectric material of the supporting structure was compensated for by controlling the distance and length of several radiating elements. The 10-dB return loss bandwidths of the designed planar LPDA antenna with light-weight supporting structure are obtained as 0.4~3.1 GHz(7.3:1) in the simulation and 0.41~3.5 GHz(8.2:1) in the measurement. The average gains in 0.5~3 GHz band are 6.77 dBi in the simulation and 6.55 dBi in the measurement. Therefore, we confirm that the designed antenna is appropriate to be installed on an aircraft due to its light-weight structure and wideband directional radiation characteristics.

Analysis and Design of a Wideband Corrugated Conical Horn Antenna Based on Mode Matching Converter (모드정합 컨버터에 기반한 광대역 원뿔형 주름 혼안테나 설계 및 분석)

  • Lee, Dong-Hak;Yang, Doo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.1-7
    • /
    • 2016
  • In this paper, the design methodology of a corrugated conical horn antenna is proposed to be obtain wide-band properties over the full range of frequencies in the Ku-band. In order to improve the properties of the corrugated conical horn antenna, such as its gain, VSWR, co-polarization to cross-polarization ratio and wide-bandwidth, two types of mode matching converters are implemented within it. One is located at the end of the circular waveguide, while the other is positioned in front of the horn-flare section. The properties of the antenna are analyzed and compared according to the position of the proposed converters through simulations. In the comparison of the antenna performance in the case where the VSWR, co-polarization to cross-polarization ratio and antenna gain over the Ku band of 12-18 GHz are less than 2, greater than 30dB and 20dB respectively, the former antenna exhibits greater stability and a wider frequency band than the latter from the viewpoint of transmitting and receiving signals simultaneously. Therefore, considering the gain, VSWR, radiation pattern and bandwidth, the horn antenna structure in which the mode matching converter is implemented inside the circular waveguide has better performance than the other.

Design of 2.4/5.8GHz Dual-Frequency CPW-Fed Planar Type Monopole Active Antennas (2.4/5.8GHz 이중 대역 코프래너 급전 평면형 모노폴 능동 안테나 설계)

  • Kim, Joon-Il;Chang, Jin-Woo;Lee, Won-Taek;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.42-50
    • /
    • 2007
  • This paper presents design methods for dual-frequency(2.4/5.8GHz) active receiving antennas. The proposed active receiving antennas are designed to interconnect the output port of a wideband antenna to the input port of an active device of High Electron Mobility Transistor directly and to receive RF signals of 2.4GHz and 5.2GHz simultaneously where the impedance matching conditions are optimized by adjusting the length of $1/20{\lambda}_0$(@5.8GHz) CPW transmission line in the planar antenna The bandwidth of implemented dual-frequency active receiving antennas is measured in the range of 2.0GHz to 3.1GHz and 5.25GHz to 5.9GHz. Gains are measured of 17.0dB at 2.4GHz and 15.0dB at 5.2GHz. The measured noise figure is 1.5dB at operating frequencies.