• 제목/요약/키워드: Wide wind speed

검색결과 78건 처리시간 0.028초

한반도 비태풍시기 강풍의 공간적 분포 특징 - 관측 자료와 강풍특보 자료 - (Spatial Distribution of Strong Winds on the Korean Peninsula during the Non-Typhoon affecting Period - Observations and Strong Wind Special Report-)

  • 나하나;정우식
    • 한국환경과학회지
    • /
    • 제30권9호
    • /
    • pp.763-777
    • /
    • 2021
  • The spatial characteristics of typhoon-class strong wind during the non-typhoon period were analyzed using, a cluster analysis of the observational data and of special strong wind advisories and, warnings issued by the Korean Meteorological Administration. On the Korean Peninsula, strong winds during non-typhoon periods showed a wide variety of spatial characteristics. In particular, the cluster analysis showed that strong winds could be classified into six clusters on the Korean Peninsula, and that the spatial distribution, occurrence rate of strong winds, and strong wind speed in each cluster were complex and diverse. In addition, our analysis of the frequency of issuance of special strong wind warnings showed a significant difference in the average frequency of strong wind warnings issued in metropolitan cities, with relatively high numbers of warnings issued in Gyeongsangbuk-do and, Jeollanam-do, and low numbers of warning issued inland and in other metropolitan cities. As a result of the changing trend in warnings issued from 2004 to 2019, Ulsan and Busan can be interpreted as having a relatively high number of warnings; the frequency of strong wind warnings issuances and strong wind occurrences in these cities is increasing rapidly. Based on the results of this study, it is necessary to identify areas with similar strong wind characteristics and consider specific regional standards in terms of disaster prevention.

생체모방공학을 적용한 고속철 차간 공간의 공력소음 연구 (Analysis of aerodynamic noise at inter-coach space of high speed trains based on biomimetic analogy)

  • 한재현;김태민;김정수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.711-716
    • /
    • 2011
  • Today, high-speed trains enjoy wide acceptance as fast, convenient and environment-friendly means of transportation. However, increase in the speed of the train entails a concomitant increase in the aerodynamic noise, adversely affecting the passenger comfort. At the train speed exceeding 300 km/h, the effects of turbulent flows and vortex sheddding are greatly amplified, contributing to a significant increase in the aerodynamic noise. Drawing a biomimetic analogy from low-noise flight of owl, a method to reduce aerodynamic noise at inter-coach space of high-speed trains is investigated. The proposed method attempts to achieve the noise reduction by modifying the turbulent flow and vortex shedding characteristics at the inter-coach space. To determine the aerodynamic noise at various train speeds, wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. The simulation and experimental results reveal that there are discrete frequency components associated with turbulent air flow at constant intervals in the frequency domain

  • PDF

Prediction of bridge flutter under a crosswind flow

  • Vu, Tan-Van;Lee, Ho-Yeop;Choi, Byung-Ho;Lee, Hak-Eun
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.275-298
    • /
    • 2013
  • This paper presents a number of approximated analytical formulations for the flutter analysis of long-span bridges using the so-called uncoupled flutter derivatives. The formulae have been developed from the simplified framework of a bimodal coupled flutter problem. As a result, the proposed method represents an extension of Selberg's empirical formula to generic bridge sections, which may be prone to one of the aeroelastic instability such as coupled-mode or single-mode (either dominated by torsion or heaving mode) flutter. Two approximated expressions for the flutter derivatives are required so that only the experimental flutter derivatives of ($H_1^*$, $A_2^*$) are measured to calculate the onset flutter. Based on asymptotic expansions of the flutter derivatives, a further simplified formula was derived to predict the critical wind speed of the cross section, which is prone to the coupled-mode flutter at large reduced wind speeds. The numerical results produced by the proposed formulas have been compared with results obtained by complex eigenvalue analysis and available approximated methods show that they seem to give satisfactory results for a wide range of study cases. Thus, these formulas can be used in the assessment of bridge flutter performance at the preliminary design stage.

GIS와 전산유체역학 모델을 이용한 기상 조건이 건물 화재에 미치는 영향 연구 (A Numerical Study on the Effects of Meteorological Conditions on Building Fires Using GIS and a CFD Model)

  • 문다솜;김민지;김재진
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.395-408
    • /
    • 2021
  • 본 연구에서는 GIS와 CFD 모델을 이용하여 풍속과 풍향이 건물 화재에 미치는 영향을 조사하였다. 이를 위해, 2020년 10월 8일 울산의 한 아파트에서 발생한 화재 사고에 대한 수치 실험을 수행하였고, 현실적인 기상 조건을 반영하기 위하여 국지기상예보시스템(LDAPS)의 바람과 온위 자료를 초기·경계 자료로 사용하였다. 먼저, 현실적인 경계 조건을 사용하여 두 가지 수치 실험을 수행하였다(규준 실험에서는 건물 화재를 고려하고, 다른 실험에서는 건물 화재를 제외하고는 규준 실험과 동일한 기상 조건 이용). 그런 다음, 규준 실험과 유입 풍속과 방향이 다른 4개의 수치 실험을 추가로 수행하였다. 수치 실험 결과, 발화 지점이 건물 풍상측에 위치할 때에는 화재로 인한 강한 상승 기류가 건물 지붕과 풍하측 지역에 영향을 미쳤다. 또한, 대피층(15층)은 건물 풍상 측 벽면의 화재를 풍하측으로 확산시키는 역할을 했다. 유입 풍속이 약할수록 발화점 주변으로의 화재가 좁게 확산되었지만 건물 위로 화염이 도달하는 고도는 상승했다. 유입 풍향이 반대인 경우, 발화 지점이 풍하측에 위치할 때에는 화염이 건물 풍상 측으로 확산되지 않았다. 본 연구 결과는 풍속과 풍향이 화재가 발생한 건물 주변의 흐름과 온도(화염) 분포에 중요하다는 것을 보여준다.

Temperature distribution prediction in longitudinal ballastless slab track with various neural network methods

  • Hanlin Liu;Wenhao Yuan;Rui Zhou;Yanliang Du;Jingmang Xu;Rong Chen
    • Smart Structures and Systems
    • /
    • 제32권2호
    • /
    • pp.83-99
    • /
    • 2023
  • The temperature prediction approaches of three important locations in an operational longitudinal slab track-bridge structure by using three typical neural network methods based on the field measuring platform of four meteorological factors and internal temperature. The measurement experiment of four meteorological factors (e.g., ambient temperature, solar radiation, wind speed, and humidity) temperature in the three locations of the longitudinal slab and base plate of three important locations (e.g., mid-span, beam end, and Wide-Narrow Joint) were conducted, and then their characteristics were analyzed, respectively. Furthermore, temperature prediction effects of three locations under five various meteorological conditions are tested by using three neural network methods, respectively, including the Artificial Neural Network (ANN), the Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN). More importantly, the predicted effects of solar radiation in four meteorological factors could be identified with three indicators (e.g., Root Means Square Error, Mean Absolute Error, Correlation Coefficient of R2). In addition, the LSTM method shows the best performance, while the CNN method has the best prediction effect by only considering a single meteorological factor.

고품질 표고 생산 지역의 버섯 생산기간중 기후 분석 (Analysis of Climatic Factors during Growing Period of High-Quality Oak Mushroom(Lentinus edodes(Berk) Sing))

  • 손정익;최원석
    • 생물환경조절학회지
    • /
    • 제9권2호
    • /
    • pp.115-119
    • /
    • 2000
  • 표고버섯은 담자균류 송이과에 속하는 식용 버섯으로, 영양 성분 및 약리적 효능이 높기 때문에 동양인에게 중요한 버섯이며, 점차로 생산량과 소비량이 증가하고 있다. 본 연구에서는, 고품질 표고버섯 생산시기의 기상자료를 분석하여 표고버섯의 품질에 영향을 주는 생육 환경요인을 분석하였다. 이를 위하여 1997~1998년 국내 고품질 표고버섯이 생산되는 지역중 3지역(부여, 원주, 장흥)을 선정하였다. 표고버섯의 다량 발생시기 20일 기준으로 기상분석시기 15일을 선정하였다. 환경요인으로는 발생시기의 일 온도차, 일습도차, 일평균온도, 일 평균습도 및 풍속을 분석하였다. 발생기간중의 일 평균온도는 버섯 발생 온도 하한치인 $7^{\circ}C$ 이하에서 적정온도 $20^{\circ}C$까지의 변화를 보였고, 일 온도차는 주간에는 $7~20^{\circ}C$, 야간에 $0~-2^{\circ}C$의 범위를 나타냈다. 일평균습도 50~70%으로 강우에 따라서 변화 폭이 컸으며, 일습도차는 40~60%의 차를 나타냈다. 풍속은 1~4m.$s^{-1}$이었다 .따라서 화고, 동고의 생육환경은 일반적인 표고버섯의 적정 생육 조건과는 큰 차이를 보였다. 생육기간동안의 일 온도차, 일습도차, 저 습도, 풍속 등의 환경 조건은 고품질 표고버섯 발생의 요인의 하나라고 추정된다. 이 연구결과는 버섯의 시설재배시 고품질 표고버섯 생산을 위한 환경조절기술로 적용될 수 있을 것으로 판단된다.

  • PDF

Flutter analysis of Stonecutters Bridge

  • Hui, Michael C.H.;Ding, Q.S.;Xu, Y.L.
    • Wind and Structures
    • /
    • 제9권2호
    • /
    • pp.125-146
    • /
    • 2006
  • Stonecutters Bridge of Hong Kong is a cable-stayed bridge with two single-column pylons each 298 m high and an aerodynamic twin deck. The total length of the bridge is 1596 m with a main span of 1018 m. The top 118 m of the tower will comprise structural steel and concrete composite while the bottom part will be of reinforced concrete. The bridge deck at the central span will be of steel whilst the side spans will be of concrete. Stonecutters Bridge has adopted a twin-girder deck design with a wide clear separation of 14.3 m between the two longitudinal girders. Although a number of studies have been conducted to investigate the aerodynamic performance of twin-girder deck, the actual real life application of this type of deck is extremely limited. This therefore triggered the need for conducting the present studies, the main objective of which is to investigate the performance of Stonecutters Bridge against flutter at its in-service stage as well as during construction. Based on the flutter derivatives obtained from the 1:80 scale rigid section model experiment, flutter analysis was carried out using 3-D finite element based single parameter searching method developed by the second author of this paper. A total of 6 finite element models of the bridge covering the in-service stage as well as 5 construction stages were established. The dynamic characteristics of the bridge associated with these stages were computed and applied in the analyses. Apart from the critical wind speeds for the onset of flutter, the dominant modes of vibration participating in the flutter vibration were also identified. The results indicate that the bridge will be stable against flutter at its in-service stage as well as during construction at wind speeds much higher than the verification wind speed of 95 m/s (1-minute mean).

국지적 기상 레이다에서의 기상 변화 탐지 방법 분석 (Analysis of Detection Method for the Weather Change in a Local Weather Radar)

  • 이종길
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1345-1352
    • /
    • 2021
  • 대부분의 기상 레이다 시스템은 중장거리용으로 매우 넓은 지역의 전체적인 기상 현상을 파악하는 목적으로 사용된다. 그러나 최근에 와서는 국지적인 재난현상의 빈발 가능성이 높아짐에 따라 국지적인 기상 레이다를 활용한 기상이변 현상의 탐지가 매우 중요한 문제이다. 따라서 이러한 국지적인 기상 이변 탐지목적의 기상 레이다는 저고도 탐지 및 급변하는 기상상황의 빠른 탐지가 필요하다. 또한 상대적으로 지표면 클러터가 큰 영향을 미치게 된다. 따라서 본 논문에서에서는 풍속의 변화정도 및 거리에 따른 풍속의 변화율을 이용하여 돌풍 및 풍속 전단현상 등의 급변하는 기상 위험 등을 탐지할 수 있는 방법을 제안하고 분석하였다. 제안한 방법은 탐지과정에서의 지표면 클러터에 의한 영향을 최소화 할 수 있고 빠른 탐지를 위한 간단한 알고리즘 구현이 가능한 방식으로서 향후 기상변화 탐지에 유용하게 활용될 수 있음을 보였다.

Atmospheric Dispersion Characteristics of Radioactive Materials according to the Local Weather and Emission Conditions

  • An, Hye Yeon;Kang, Yoon-Hee;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.315-327
    • /
    • 2016
  • Background: This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Materials and Methods: Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the $^{137}Cs$, using the WRF/HYSPLIT modeling system. Results and Discussion: The highest mean concentration of $^{137}Cs$ occurred at 0900 LST under the ME4_1 (main wind direction: SSW, daily average wind speed: $2.8ms^{-1}$), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, $4.1ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4_4 (S, $2.7ms^{-1}$), the highest mean concentration of $^{137}Cs$ occurred at 0300 LST because $^{137}Cs$ stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1_3 and EM2_3 that had the maximum total number of particles showed the widest dispersion of $^{137}Cs$, while its highest mean concentration was estimated under the EM1_1 considering the relatively narrow dispersion and high emission rate. Conclusion: This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of $^{137}Cs$ concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where $^{137}Cs$ is dispersed, the emission rate of $^{137}Cs$, and the number of emitted particles.

Correlation Between the “seeing FWHM” of Satellite Optical Observations and Meteorological Data at the OWL-Net Station, Mongolia

  • Bae, Young-Ho;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Park, Sun-Youp;Moon, Hong Kyu;Choi, Young-Jun;Jang, Hyun-Jung;Roh, Dong-Goo;Choi, Jin;Park, Maru;Cho, Sungki;Kim, Myung-Jin;Choi, Eun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.137-146
    • /
    • 2016
  • The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.