• Title/Summary/Keyword: Wide voltage operation

Search Result 254, Processing Time 0.028 seconds

Instantaneous Torque Control of IPMSM for Drive of Wide Speed Range (광범위한 속도영역의 운전을 위한 IPMSM의 순시 토크제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.183-186
    • /
    • 2002
  • The paper is proposed intantaneous torque control of IPMSM for drive of wide speed range. The control scheme is based on the mathematical model of the motor and is applicable to the constant torque and field weakening operations The scheme allows the motor to be driven with maximum torque per ampere (MTPA) characteristic below base speed and it maintains the maximum voltage limit of the motor wide field weakening and the motor current limit under all conditions of operation accurately. For each control mode. a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to PMSM drive system for drive of wide speed range, the operating characteristics controlled by maximum torque control are examined in detail by simulation.

  • PDF

ACCELEROMETER SELECTION CONSIDERATIONS Charge and Integral Electronic Piezo Electric

  • Lally, Jim
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.1047-1051
    • /
    • 2004
  • Charge amplifier systems benefit from the very wide dynamic range of PE accelerometers by offering flexibility in adjusting the electrical output characteristics such as sensitivity and range. They are well suited for operation at high temperatures. Modern charge systems feature improved low noise operation, simplified digital controls, and dual mode operation for operation with charge or IEPE voltage mode sensors. high impedance circuitry is not well suited for operation in adverse field or factory environments. The resolution of a PE accelerometer may not be specified or known since noise is a system consideration determined by cable length and amplifier gain. IEPE accelerometrs operate from a constant current power source, provide a high-voltage, low-impedance, fixed mV/g output. They operate through long, ordinary, coaxial cable in adverse environments without degradation of signal quality. They have limited high temperature range. IEPE sensors are simple to operate. Both resolution and operating range are defined specifications. Cost perchannel is lower compared to PE systems since low-noise cable and charge amplifiers are not required.

  • PDF

Analysis and Design of a Current-fed Two Inductor Bi-directional DC/DC Converter using Resonance for a Wide Voltage Range

  • Noh, Yong-Su;Kim, Bum-Jun;Choi, Sung-Chon;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1634-1644
    • /
    • 2016
  • In this paper, a current-fed two-inductor bi-directional DC/DC converter using resonance (CF-TIBCR) and its design method are proposed. The CF-TIBCR has characteristics of low current ripple and a high current rating because of two separated inductors. Also, it achieves zero voltage switching for all switches and zero current switching for switches of a low voltage stage by using the resonant tank. Besides, a voltage spike problem in conventional current-fed converters is solved without the need for an additional snubber or clamping circuits. As a result, the CF-TIBCR features high step-up and high efficiency. Since the proposed converter has difficulty achieving the soft-switching condition when the converter requires the low voltage transfer ratio, a method that varies the number of resonant cycles is adopted to extend the output voltage range with satisfying the soft-switching condition. The principles of the operation characteristics are presented with a theoretical analysis, and the proposed converter is verified through results of an experiment using a laboratory prototype.

A New Current-Fed Isolated Boost Converter for Battery Powered Applications (축전지 구동 응용을 위한 새로운 승압형 DC/DC 컨버터)

  • 노정욱;한승훈;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.646-649
    • /
    • 1999
  • A new isolated boost dc to dc convertor suitable for a low input voltage application is proposed. The proposed convertor features the low switch current stresses, the wide input voltage range operation, and the inherent inrush current protection characteristics, essential to design a low to high voltage conversion circuit. A comparative analysis and experimental results are presented to show the validity of the proposed convertor.

  • PDF

Full ZVS Load Range Diode Clamped Three-level DC-DC Converter with Secondary Modulation

  • Shi, Yong
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.93-101
    • /
    • 2016
  • A new four-primary-switch diode clamped soft switching three-level DC-DC converter (TLDC) with full zero-voltage switching (ZVS) load range and TL secondary voltage waveform is proposed. The operation principle and characteristics of the presented converter are discussed, and experimental results are consistent with theoretical predictions. The improvements of the proposed converter include a simple and compact primary structure, TL secondary rectified voltage waveform, wide load range ZVS for all primary switches, and full output-regulated range with soft switching operation. The proposed converter also has some disadvantages. The VA rating of the transformer is slightly larger than that of conventional TLDCs in variable input and constant output mode. The conduction loss of the primary coil is slightly higher because an air gap is inserted into the magnetic cores of the transformer. Finally, the secondary circuit is slightly complex.

Sensorless Scheme for Interior Permanent Magnet Synchronous Motors with a Wide Speed Control Range

  • Hong, Chan-Hee;Lee, Ju;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2173-2181
    • /
    • 2016
  • Permanent magnet synchronous motors (PMSMs) have higher torque and superior output power per volume than other types of AC motors. They are commonly used for applications that require a large output power and a wide range of speed. For precise control of PMSMs, knowing the accurate position of the rotor is essential, and normally position sensors such as a resolver or an encoder are employed. On the other hand, the position sensors make the driving system expensive and unstable if the attached sensor malfunctions. Therefore, sensorless algorithms are widely researched nowadays, to reduce the cost and cope with sensor failure. This paper proposes a sensorless algorithm that can be applied to a wide range of speed. The proposed method features a robust operation at low-speed as well as high-speed ranges by employing a gain adjustment scheme and intermittent voltage pulse injection method. In the proposed scheme the position estimation gain is tuned by a closed loop manner to have stable operation in tough driving environment. The proposed algorithm is fully verified by various experiments done with a 1 kW outer rotor-type PMSM.

Phase Locked Loop based Pulse Density Modulation Scheme for the Power Control of Induction Heating Applications

  • Nagarajan, Booma;Sathi, Rama Reddy
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.65-77
    • /
    • 2015
  • Resonant converters are well suited for induction heating (IH) applications due to their advantages such as efficiency and power density. The control systems of these appliances should provide smooth and wide power control with fewer losses. In this paper, a simple phase locked loop (PLL) based variable duty cycle (VDC) pulse density modulation (PDM) power control scheme for use in class-D inverters for IH loads is proposed. This VDC PDM control method provides a wide power control range. This control scheme also achieves stable and efficient Zero-Voltage-Switching (ZVS) operation over a wide load range. Analysis and modeling of an IH load is done to perform a time domain simulation. The design and output power analysis of a class-D inverter are done for both the conventional pulse width modulation (PWM) and the proposed PLL based VDC PDM methods. The control principles of the proposed method are described in detail. The validity of the proposed control scheme is verified through MATLAB simulations. The PLL loop maintains operation closer to the resonant frequency irrespective of variations in the load parameters. The proposed control scheme provides a linear output power variation to simplify the control logic. A prototype of the class-D inverter system is implemented to validate the simulation results.

Design Aspects of a New Reliable Torsional Switch with Excellent RF Response

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • This paper proposes a metal contact RF MEMS switch which utilizes a see-saw mechanism to acquire a switching action. The switch was built on a quartz substrate and involves vertical deflection of the beam under an applied actuation voltage of 5.46 volts over a signal line. The see-saw mechanism relieves much of the operation voltage required to actuate the switch. The switch has a stiff beam eliminating any stray mechanical forces. The switch has an excellent isolation of −90.9 dB (compared to − 58 dB in conventional designs ), the insertion of −0.2 dB, and a wide bandwidth of 88 GHz (compared to 40 GHz in conventional design ) making the switch suitable for wide band applications.

Start-up circuit with wide supply swing voltage range and modified power-up characteristic for bandgap reference voltage generator. (넓은 전압 범위와 개선된 파워-업 특성을 가지는 밴드갭 기준전압 발생기의 스타트-업 회로)

  • Sung, Kwang-Young;Kim, Jong-Hee;Kim, Tae-Ho;Vu, Cao Tuan;Lee, Jae-Hyung;Lim, Gyu-Ho;Park, Mu-Hum;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1544-1551
    • /
    • 2007
  • A start-up circuit of the bandgap reference voltage generator of cascode current mirror type with wide operating voltage range and enhanced power-up characteristics is proposed in the paper. It is confirmed by simulation that the newly proposed start-up circuit does not affect the operation of the bandgap reference voltage generatory even though the supply voltage(VDDA) is higher and has more stable power-up characteristic than the conventional start-up circuit. Test chips are designed and fabricated with $0.18{\mu}m$ tripple well CMOS process and their test has been completed. The mean value of measured the reference voltage(Vref) is 738mV and The three sigma value($3{\sigma}$) is 29.88mV.

Threshold voltage influence reduction and Wide Aperture ratio in Active Matrix Orgnic Light Emitting Diode Display (AMOLED(active matrix organic light emitting diode) 의 문턱전압 보상과 화소구조에 대한 연구)

  • 김정민;곽계달;신흥재;최성욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.257-260
    • /
    • 2002
  • This paper describes the pixel of AMOLED(act ive matrix organic light emitting diode) driving circuit by poly-sl technology. The area per pixel is 278um$\times$278um in 120$\times$160(2.2 inch) Driving the OLEDS with active matrix leads to the lower voltage operation, the lower peak pixel currents and the display with much greater efficiency and brightness The role of the active matrix is to provide a constant current throughout the entire frame time and is eliminating the high currents encountered In the passive matrix approach, This design can support the high resolutions expected by the consumer because the current variation specification is norestricted. The pixel has been designed driving TFT threshold voltage cancellation circuit and wide aperture ratio circuit that communizes 4 pixel. The test simulation results and layout are 11% per threshold-current var Eat ion and 12.5% the aperture ratio of increase.

  • PDF