• Title/Summary/Keyword: Wide speed range

Search Result 615, Processing Time 0.023 seconds

A Study on the Evaluation of MPEG-4 Video Decoding Complexity for HDTV (HDTV를 위한 MPEG-4 비디오 디코딩 복잡도의 평가에 관한 연구)

  • Ahn, Seong-Yeol;Park, Won-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.595-598
    • /
    • 2005
  • MPEG-4 Visual is, and international standard for the object-based video compression, designed for supporting a wide range of applications from multimedia communication to HDTV. To control the minimum decoding complexity required at the decoder, the MPEG-4 Visual standard defines the co-called video buffering mechanism, which includes three video buffer models. Among them, the VCV(Video Complexity Verifier) defines the control of the processing speed for decoding of a macroblock, there are two models: VCV and B-VCV distinguishing the boundary and non-boundary MB. This paper presents the evaluation results of decoding complexity by measuring decoding time of a MB for rectangular, arbitrarily shaped video objects and the various types of objects supporting the resolution of HDTV using the optimized MPEG-4 Reference Software. The experimental results shows that decoding complexity varies depending on the coding type and more effective usage of decoding resources may be possible.

  • PDF

The Comparison of RBS and TDP for the Sensor Networks Synchronization

  • Lee, Hyo-Jung;Kim, Byung-Chul;Kwon, Young-Mi
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.70-74
    • /
    • 2005
  • Sensor networks have emerged as an interesting and important research area in the last few years. These networks require that time be synchronized more precisely than in traditional Internet applications. In this paper, we compared and analyzed the performance of the RBS and TDP mechanisms in the view of the number of generated messages and the synchronization accuracy. The reason that we chose be RBS ad the TDP mechanism to be compared is because the RES is an innovative method to achieve the high accurate synchronization. And TDP is a new method taking over the NTP method which has been used widely in the Internet. We simulated the performance of two methods assuming the IEEE 802.11 CSMA/CA MAC. As for the number of nodes in the sensor networks, two situations of 25 (for the small size network) and 100 (for the large size network) nodes are used. In the aspect of the number of messages generated for the synchronization, TDP is far better than RBS. But, the synchronization accuracy of RBS is far higher than that of TDP. We cm conclude that in a small size sensor networks requiring very high accuracy, such as an application of very high speed objects tracking in a confined space, the RBS is more proper than TDP even though the RBS may generate more traffic than TDP. But, in a wide range sensor networks with a large number of nodes, TDP is more realistic though the accuracy is somewhat worse than RBS because RBS may make so many synchronization messages, and then consume more energies at each node. So, two mechanisms may be used selectively according to the required environments, without saying that the one method is always better than the other.

Two-Dimensional Finite-Volume Unsteady-Flow Model for Shocks (충격파 모의를 위한 이차원 유한체적 비정상 흐름 모형)

  • Lee, Gil-Seong;Lee, Seong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.279-290
    • /
    • 1998
  • The height and speed of the shock wave are critical data in flood-control operations or in the design of channel walls and bridges along rivers with high flow velocities. Therefore, a numerical model is needed for simulating flow discontinuity over a wide range of conditions. In this study, a governing equation. As a Riemann solver Roe(1981)'s one is used. The model employs the modified MUSCL for handling the unstructured grids in this research. this model that adopts the explicit tradditional twl dimmensional dam break problems, two hydraulic dam break model is simulations, and a steady state simulation in a curved channel. Conclusions of this research are as follows : 1) the finite volume method can be combined with the Godonov-type method that is useful for modeling shocks. Hence, the finite volume method is suitable for modeling shocks. 2) The finite volume model combined with the modified MUSCL is successful in modeling shock. Therefore, modified MUSCL is proved to be valid.

  • PDF

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

Resistance and Structural Safety of a 3M Carbon Fibier-based Kayak (3미터급 카본 카약의 저항성능 및 구조 안전성 연구)

  • Seo, Kwang-Cheol;Lee, Gyeong-Woo;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.482-488
    • /
    • 2019
  • Leisure and business facilities have been steadily developing in Korea. Among waterborne leisure vessels and equipment, the distribution and sale of kayaks and canoes have significantly increased. Previously, (FRP) materials were primarily employed for constructing kayaks. However, owing to global warming and depletion of natural resources, the demand for non-polluting renewable energy is rapidly increasing, which has increased the demand for carbon fibers. To meet the requirements of changing social consciousness, a carbon fiber-based commercial kayak was designed in this study. Resistance analysis and structural safety were conducted by employing software tool for verifying the reliability of the proposed kayak. The pressure resistance and frictional resistance were examined in a wide range of speed. Obtained results indicate that at speeds greater than 2.6 m/s, the pressure resistance significantly increases and the total resistance also increases. Furthermore, the results corroborate that the proposed kayak structure has a adequate safety with respect to the design loads that are considered during operating conditions.

Distance Sensing of Moving Target with Frequency Control of 2.4 GHz Doppler Radar (2.4 GHz 도플러 레이다의 주파수 조정을 통한 이동체 거리 센싱)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • In general, a Doppler radar can measure only the velocity of a moving target. To measure the distance of a moving target, it is necessary to use a frequency-modulated continuous wave or pulse radar. However, the latter are very complex in terms of both hardware as well as signal processing. Moreover, the requirement of wide bandwidth necessitates the use of millimeter-wave frequency bands of 24 GHz and 77 GHz. Recently, a new kind of Doppler radar using multitone frequency has been studied to sense the distance of moving targets in addition to their speed. In this study, we show that distance sensing of moving targets is possible by adjusting only the frequency of a 2.4 GHz Doppler radar with low cost phase lock loop. In particular, we show that distance can be sensed using only alternating current information without direct current offset information. The proposed technology satisfies the Korean local standard for low power radio equipment for moving target identification in the 2.4 GHz frequency band, and enables multiple long-range sensing and radio-frequency identification applications.

Performance Analysis of Low Earth Orbit Satellite Communication Systems Under Multi-path Fading Environments (다중경로 페이딩 환경하에서의 저궤도 위성통신시스템 성능 분석)

  • Hae-uk Lee;Young-bin Ryu;Hyuk-jun Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.410-416
    • /
    • 2023
  • Unlike geostationary satellite communication systems, low-earth orbit(LEO) satellite communication systems move at relatively high speeds, and the angle with the ground device is not fixed and varies over a wide range. The propagation channel condition between satellites and ground nodes cannot be assumed line of sight(LOS) anymore. This paper analyzes the low-orbit multi-path fading satellite channel model that can occur in LEO satellite communication systems and Doppler frequency transition caused by high-speed maneuvering of LEO satellites and presents effective equalization techniques for OFDM and SC-FDE transmission methods suitable for multi-path frequency selective fading satellite channel models. In addition, this paper compares and analyzes the performance of OFDM and SC-FDE transmission methods in multipath fading LEO satellite channel environment using the proposed equalization techniques through simulations. Simulation results showed that SC-FDE outpeformed OFDM.

Multi-scale calibration of a line-style sand pluviator

  • Yifan Yang;Dirk A. de Lange;Huan Wang;Amin Askarinejad
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.431-441
    • /
    • 2024
  • A newly developed line-style sand pluviator has been calibrated to prepare repeatable sand specimens of specific statuses of compactness and homogeneity for laboratory tests. Sand is falling via a bottom slot of a fixed hopper, and by moving the sample container under the slot, the container is evenly filled with sand. The pluviator is designed with high flexibility: The falling height of sand, the hopper's opening width and the relative moving speed between the hopper and the sample box can be easily adjusted. By changing these control factors, sand specimens of a wide range of densities can be prepared. A series of specimen preparation was performed using the coarse Merwede River sand. Performance of the pluviator was systematically evaluated by exploring the alteration of achievable density, as well as checking the homogeneity and fabric of the prepared samples by CT scanning. It was found that the density of prepared coarse sand samples has monotonic correlations with none of the three control factors. Furthermore, CT scanning results suggested that the prepared samples exhibited excellent homogeneity in the horizontal direction but periodical alteration of density in the vertical direction. Based on these calibration test results, a preliminary hypothesis is proposed to describe the general working principles of this type of pluviators a priori, illustrating the mechanisms dominating the non-monotonic correlations between control factors and the relative density as well as the vertically prevalent heterogeneity of specimens. Accordingly, practical recommendations are made in a unified framework in order to lessen the load of similar calibration work.

Knowledge-Based Smart System for the Identification of Coronavirus (COVID-19): Battling the Pandemic with Scientific Perspectives

  • Muhammad Saleem;Muhammad Hamid
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.127-134
    • /
    • 2024
  • The acute respiratory infection known as a coronavirus (COVID-19) may present with a wide range of clinical manifestations, ranging from no symptoms at all to severe pneumonia and even death. Expert medical systems, particularly those used in the diagnostic and monitoring phases of treatment, have the potential to provide beneficial results in the fight against COVID-19. The significance of healthcare mobile technologies, as well as the advantages they provide, are quickly growing, particularly when such applications are linked to the internet of things. This research work presents a knowledge-based smart system for the primary diagnosis of COVID-19. The system uses symptoms that manifest in the patient to make an educated guess about the severity of the COVID-19 infection. The proposed inference system can assist individuals in self-diagnosing their conditions and can also assist medical professionals in identifying the ailment. The system is designed to be user-friendly and easy to use, with the goal of increasing the speed and accuracy of COVID-19 diagnosis. With the current global pandemic, early identification of COVID-19 is essential to regulate and break the cycle of transmission of the disease. The results of this research demonstrate the feasibility and effectiveness of using a knowledge-based smart system for COVID-19 diagnosis, and the system has the potential to improve the overall response to the COVID-19 pandemic. In conclusion, these sorts of knowledge-based smart technologies have the potential to be useful in preventing the deaths caused by the COVID-19 pandemic.

Giga WDM-PON based on ASE Injection R-SOA (ASE 주입형 R-SOA 기반 기가급 WDM-PON 연구)

  • Shin Hong-Seok;Hyun Yoo-Jeong;Lee Kyung-Woo;Park Sung-Bum;Shin Dong-Jae;Jung Dae-Kwang;Kim Seung-Woo;Yun In-Kuk;Lee Jeong-Seok;Oh Yun-Je;Park Jin-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.35-44
    • /
    • 2006
  • Reflective semiconductor optical amplifiers(R-SOAs) were designed with high gain, wide optical bandwidth, high thermal reliability and wide modulation bandwidth in TO-can package for the transmitter of wavelength division multiplexed-passive optical network(WDM-PON) application. Double trench structure and current block layer were introduced in designing the active layer of R-SOA to enable high speed modulation. The injection power requirement and the viable temperature range of WDM-PON system are experimentally analysed in based on Amplified Spontaneous Emission(ASE)-injected R-SOAs. The effect of the different injection spectrum in the gain-saturated R-SOA was experimentally characterized based on the measurements of excessive intensity noise, Q factor, and BER. The proposed spectral pre-composition method reduces the bandwidth of injection source below the AWG bandwidth and thereby avoids spectrum distortion impeding the intensity noise reduction originated from the amplitude squeezing.