• Title/Summary/Keyword: Wide output voltage

Search Result 389, Processing Time 0.024 seconds

Efficient Switch Mode Power Supply Design with Minimum Components for 5W Output Power

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.79-86
    • /
    • 2009
  • This paper presents a flyback technology in power conversion aimed at increasing efficiency and power density, reducing cost and using minimum components in AC-DC conversion. The proposed converter provides these features for square waveforms and constant frequency PWM. It is designed to operate in a wide input voltage range of 75-265VAC RMS with two output voltages of 5V and 20V respectively and full load output power of 5W. The proposed converter is suitable for high efficiency and high power density application such as LCDs, TV power modules, AC adapters, motor control, appliance control, telecom and networking products.

Study of Flyback Switching Power Supply With Very Wide Input Voltage Range (매우 넓은 입력전압 범위를 갖는 스위치모드 플라이백 파워서플라이에 대한 연구)

  • La, Jae-Du;Lee, Chun-Taek;Park, Hyung-Nam;Lee, Yong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1008-1009
    • /
    • 2015
  • An emergency diesel generator system is an independent source of power that supports important electrical systems on loss of normal power supply. AVR(Automatic Voltage Regulator) is a regulator which regulates the output voltage at a nominal constant voltage level. Specially, a power supply for the AVR must be operated at the very wide input range. In this paper, a flyback power supply with very wide input voltage range is proposed.

  • PDF

A DC Ripple Voltage Suppression Scheme by Harmonic Injection in Three Phase Buck Diode Rectifiers with Unity Power Factor (단위 역률을 갖는 3상 강압형 다이오드 정류기에서 고조파 주입에 의한 DC 리플전압 저감 기법)

  • 고종진
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.305-308
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output in three phase buck diode rectifiers is presented in this paper. The proposed pulse frequency modulation methods and duty ratio modulation methods are employed to regulate the output voltage of the buck diode rectifiers and guarantee zero-current -switching(ZCS) of the switch over the wide load range The proposed control methods used in this paper provide generally good performance such as low THD of the input line current and unity power factor. IN addition control methods can be effectively used to suppress the low frequency ripple voltage appeared in the dc output voltage. The harmonic injection technique illustrates its validity and effectiveness through the simulations.

  • PDF

Sinusoidal Input Power factor Improved for Single-Phase Buck AC-DC Type Converter (정현파 입력 역률개선을 위한 단상 강압형 AC-DC 컨버터)

  • Jung, S.H.;Kwon, K.S.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.338-340
    • /
    • 2001
  • Power factor improved for single-phase buck-converter is studied in the paper. To sinusoidal waveform the input current with a near-unity power factor over a wide variety of operating conditions, the output capacitor is operated with voltage reversibility for the supply by arranging the auxiliary diode and power switching device. Then the output voltage is superposed on the input voltage during on time duration of power switching devices in order to minimize the input current distortion caused by the small input voltage when changing the polarity. The tested setup, using two insulated gate bipolar transistors(IGBT) and a microcomputer, is implemented and IGBT are switched with 20[kHz], which is out of the audible band. Moreover, a rigorous state-space analysis is introduced to predict the operation of the rectifier. The simulated results confirm that the input current can be sinusoidal waveform with a near-unity power factor and a satisfactory output voltage regulation can be achieved.

  • PDF

Development of 3.0[kW]class Fuel Cell Power Conversion System (3[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.54-63
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage $380[V_{DC}]$ and a PWM inverter with LC filter to convent the DC voltage to single-phase $220[V_{AC}]$. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%]is obtained over the wide output voltage regulation ranges and load variations.

Advanced Field Weakening Control for Squirrel-Cage Induction Motor in Wide Range of DC-Link Voltage Conditions

  • Son, Yung-Deug;Jung, Jun-Hyung;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.665-673
    • /
    • 2017
  • This paper proposes a field weakening control method for operating an induction motor with a variable DC input voltage condition. In the variable DC voltage condition such as a battery, the field weakening method are required for the maximum output power. The conventional field weakening control methods can be used for operating the induction motor over the rated speed in a constant DC-link voltage condition. However, the conventional methods for operating the motor with the variable DC voltage is not suitable for the maximum output power. To overcome this problem, this paper proposes the optimized field weakening control method to extend the operating range of the induction motor with a rated power in a limited thermal and a wide DC input voltage conditions. The optimized d-axis and q-axis current equations are derived according to the field weakening region I and II to extend the operating region. The experimental results are presented to verify the effectiveness of the proposed method.

The Development of a Programmable Single-Phase AC Power Source with a Linear Power Amplifier

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Yoo, Jae-Geun;Son, Jae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.39-46
    • /
    • 2007
  • This paper presents a programmable single-phase ac power source that provides a sinusoidal output voltage with an adjustable output amplitude and frequency over a wide range as well as an arbitrary waveform. The ac power source under consideration have a linear power amplifier. The desired output values can be programmed with a personal computer. The power source operates at 220[V]/60[Hz] mains and the output voltage is isolated from the input circuit. The system consists mainly of a power converter to generate and amplify the waveform signal, a controller to control the desired output signal and measure the output parameters, and a control program to set the desired output and display the values. The prototype ac power source was constructed and tested with the results demonstrating a good performance.

Multimode Hybrid Control Strategy of LLC Resonant Converter in Applications with Wide Input Voltage Range

  • Li, Yan;Zhang, Kun;Yang, Shuaifei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes a multimode hybrid control strategy that can achieve zero-voltage switching of primary switches and zero-current switching of secondary rectifier diodes in a wide input voltage range for full-bridge LLC resonant converters. When the input voltage is lower than the rated voltage, the converter operates in Mode 1 through the variable-frequency control strategy. When the input voltage is higher than the rated voltage, the converter operates in Mode 2 through the VF and phase-shift control strategy until the switching frequency reaches the upper limit. Then, the converter operates in Mode 3 through the constant-frequency and phase-shift control strategy. The secondary-side diode current will operate in the discontinuous current mode in Modes 1 and 3, whereas it will operate in the boundary current mode in Mode 2. The current RMS value and conduction loss can be reduced in Mode 2. A detailed theoretical analysis of the operation principle, the voltage gain characteristics, and the realization method is presented in this paper. Finally, a 500 W prototype with 100-200 V input voltage and 40 V output voltage is built to verify the feasibility of the multimode hybrid control strategy.

A high voltage resonant genrator for X-ray apparatus (X-선 발생기기용 공진형 고전압 발생기)

  • 김학성;원충연
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.217-225
    • /
    • 1996
  • This paper describes a high power resonant inverter for diagnostic X-ray generators using zero-voltage soft-switching technology. The system consists of a step-down chopper, a resonant phase-shift PWM inverter, a hihg-voltage diode, and high voltage cables a smoothing DC capacitor. The inverter makes use the leakage inductance of the hihg-voltage transformer and external capacitor as resonant components. The rectified input voltage is controlled by a step-down chopper with input voltage compensator. The output regualtion is obtained by a resonant phase-shift PWM inverter with the digital feedback controller using DSP (digital signal processor), resulting in fast rising time and wide output voltage variation. The theoretical results are correlated with results from an experimental prototype of a 7-kVp, 300mA (21kW).

  • PDF

High Noise Margin LVDS I/O Circuits for Highly Parallel I/O Environments (다수의 병렬 입.출력 환경을 위한 높은 노이즈 마진을 갖는 LVDS I/O 회로)

  • Kim, Dong-Gu;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.85-93
    • /
    • 2007
  • This paper presents new LVDS I/O circuits with a high noise margin for use in highly parallel I/O environments. The proposed LVDS I/O includes transmitter and receiver parts. The transmitter circuits consist of a differential phase splitter and a output stage with common mode feedback(CMFB). The differential phase splitter generates a pair of differential signals which have a balanced duty cycle and $180^{\circ}$ phase difference over a wide supply voltage variation due to SSO(simultaneous switching output) noises. The CMFB output stage produces the required constant output current and maintains the required VCM(common mode voltage) within ${\pm}$0.1V tolerance without external circuits in a SSO environment. The proposed receiver circuits in this paper utilizes a three-stage structure(single-ended differential amp., common source amp., output stage) to accurately receive high-speed signals. The receiver part employs a very wide common mode input range differential amplifier(VCDA). As a result, the receiver improves the immunities for the common mode noise and for the supply voltage difference, represented by Vgdp, between the transmitter and receiver sides. Also, the receiver produces a rail-to-rail, full swing output voltage with a balanced duty cycle(50% ${\pm}$ 3%) without external circuits in a SSO environment, which enables correct data recovery. The proposed LVDS I/O circuits have been designed and simulated with 0.18um TSMC library using H-SPICE.