• 제목/요약/키워드: Wide laser beam

검색결과 67건 처리시간 0.026초

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

고종횡비를 갖는 용액기반 원통형 마이크로렌즈 제조 (Fabrication of Solution-Based Cylindrical Microlens with High Aspect Ratio)

  • 전경준;이진영;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.70-76
    • /
    • 2021
  • A cylindrical microlens (CML) has been widely used as an optical element for organic light-emitting diodes (OLEDs), light diffusers, image sensors, 3D imaging, etc. To fabricate high-performance optoelectronic devices, the CML with high aspect ratio is demanded. In this work, we report on facile solution-based processes (i.e., slot-die and needle coatings) to fabricate the CML using poly(methyl methacrylate) (PMMA). It is found that compared with needle coating, slot-die coating provides the CML with lower aspect ratio due to the wide spread of solution along the hydrophilic head lip. Although needle coating provides the CML with high aspect ratio, it requires a high precision needle array module. To demonstrate that the aspect ratio of CML can be enhanced using slot-die coating, we have varied the molecular weight of PMMA. We can achieve the CML with higher aspect ratio using PMMA with lower molecular weight at a fixed viscosity because of the higher concentration of PMMA solute in the solution. We have also shown that the aspect ratio of CML can be further boosted by coating it repeatedly. With this scheme, we have fabricated the CML with the width of 252 ㎛ and the thickness of 5.95 ㎛ (aspect ratio=0.024). To visualize its light diffusion property, we have irradiated a laser beam to the CML and observed that the laser beam spreads widely in the vertical direction of the CML.

Enhancement of Magneto-optical Kerr Effect Signal from the Nanostructure by Employing Anti-reflection Coated Substrate

  • Kim, D.H.;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • 제13권2호
    • /
    • pp.70-75
    • /
    • 2008
  • In this study, a MOKE (Magneto-optical Kerr effect) measurement method for magnetic nanostructures is proposed. Theoretically, the MOKE signal enhancement can be predicted and confirmed when an anti-reflection coated substrate is used. Since MOKE is a ratio of reflectivity and the difference between the reflectivities for two magnetic states, when the reflectivity of the substrate part is reduced by employing an anti-reflection coated substrate, MOKE signal enhancement can be achieved. The enhancement is confirmed by simple numerical MOKE calculations. When the reflectivity of an anti-reflection coated substrate is 0.7%, the calculated MOKE signal is about 79% of its bulk values for the 100-nm wide Fe nanowire with a 1500-nm radius laser beam. It was found that, for various numerical calculations, a larger MOKE signal is obtained relative to a smaller substrate reflectivity.

두 종모드 레이저 빛 사이의 맥놀이 신호를 이용한 간섭계에 의한 유효 광학 두께 측정 (Measurement of the effective optical thickness of optical media using intermode beat interferometer scheme)

  • 윤신영;조규만;이용산
    • 한국광학회지
    • /
    • 제8권1호
    • /
    • pp.26-30
    • /
    • 1997
  • 서로 수직으로 편광되고 두개의 종모우드로 발진하는 주파수가 안정화된 He-Ne 레이저를 이용하여 넓은 측정 범위를 갖는 헤테로다인 간섭계를 구성하였다. 두 모우드 사이의 맥놀이 주파수인 684MHz에 대한 라디오 주파수 간섭을 이용하여 약 .+-.1.74.mu.m의 분해능으로 광학매질의 광학두께를 측정할 수 있는 장치를 구성하였다. 이와 같은 측정장치를 이용하여 Nd:YAG 레이저의 수동형 Q-스위칭에 포화흡수체로 사용되고 있는 유기염료 박막의 두께와 국부적인 광학두께의 변화에 대한 map을 구할 수 있었다.

  • PDF

A Development of STL-Interfaced Constant-Speed Path Controller

  • Kim, Seungwoo;Minkook Ko;Jaechul Bang
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.2027-2030
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world- wide some corporations including the U.S.A, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm fer constant-speed path control is implemented and experimented in the CAFL$\^$VM/ (Computer Aided Fabrication of Lamination for Various Material) system, the new SffS which is developed in this paper. Finally, the ceramic, new material developed in this paper, cut and fabricated. The dimensional accuracy and mechanical stability of the 3D object is confirmed through the experiment, also.

  • PDF

운용중인 철도터널의 안전관리 시스템 시범구축 (Development of Safety Monitoring System for Operating Railway Tunnel)

  • 이수형;신민호;김현기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.73-78
    • /
    • 2008
  • There has been need for safety monitoring systems for the social infrastructures. These infrastructures are subject to degradation over time, reduced functionality, and loss of functionality as a result of factors such as a wide variety of installation environments, natural disasters, and nearby work. Therefore, it is necessary to perform appropriate inspections, repairs, and renovations to ensure safe and efficient maintenance and operation. This paper introduces the example of the development of the safety monitoring system for operating railway tunnel. Tunnel profile measuring system using laser beam, crack gauges, accelerometer and a pluviometer were implemented to monitor the safety of a deteriorated tunnel. The measured data were transferred through wireless network and analyzed in real time. The safety criteria for tunnel stabilities and train operations are also discussed.

  • PDF

레이저 디스플레이를 위한 전자력 구동 스캐닝 미러의 설계 (Design of Electromagnetically Driven Micro Scanning Mirror for Laser Animation System)

  • 이경건;장윤호;유병욱;진주영;임용근;김용권
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.578-585
    • /
    • 2009
  • In this paper, we present the design of an electromagnetic scanning mirror with torsional springs. The scanning mirror consisting of torsional springs and electromagnetic coils was designed for the applications of laser animation systems. We analyzed and optimized three types of torsional springs, namely, straight beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The torsional springs were analyzed in terms of electrical resistance, fabrication error tolerance, and resonance mode separation of each type using analytical formula or numerical analysis. The RSS has advantages over the others as follows: 1) A low resistance of conductors, 2) wide resonance mode separation, 3) strong fabrication error tolerance, 4) a small footprint. The double-layer coils were chosen instead of single-layer coils with respect to electromagnetic forces. It resulted in lower power consumption. The geometry of the scanning mirror was optimized by calculations; RSS turn was 12 and the width of double-layer coil was $100{\mu}m$, respectively. When the static rotational angle is 5 degrees, the power consumption of the mirror plate was calculated to be 9.35 mW since the resistance of the coil part and a current is $122{\Omega}$ and 8.75 mA, respectively. The power consumption of full device including the mirror plate and torsional springs was calculated to be 9.63 mW.

R-면 사파이어 기판 위에 제작된 계단형 모서리 조셉슨 접합의 특성 (Fabrication and Characterization of Step-Edge Josephson Junctions on R-plane Al$_2O_3$ Substrates)

  • 임해용;김인선;김동호;박용기;박종철
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.147-151
    • /
    • 1999
  • YBCO step-edge Josephson junction were fabricated on sapphire substrates. The steps were formed on R-plane sapphire substrates by using Ar ion milling with PR masks. The step angle was controlled in the wide range from 25$^{\circ}$ to 50$^{\circ}$ by adjusting both the Ar ion incident angle and the photoresist mask rotation angle relative to the incident Ar ion beam. CeO$_2$ buffer layer and in-situ YBa$_2Cu_3O_{7-{\delta}}$ (YBCO) thin films was deposited on the stepped R-plane sapphire substrates by pulsed laser deposition method. The YBCO film thickness was varied to obtain the ratio of film thickness to step height in the range from 0.5 to 1. The step edge junction exhibited RSJ-like behaviors with I$_cR_n$ product of 100 ${\sim}$ 300 ${\mu}$V, critical current density of 10$^3$ ${\sim}$ 10$^5$ A/ cm$^2$ at 77 K.

  • PDF

다종재료용 쾌속 임의형상가공시스템의 개발 (Development of Agile SFFS(Solid Freeform Fabrication System) for a Wide Variety of Engineering Materials)

  • 고민국;엄태준;주영철;공용해;천인국;방재철;김승우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.311-314
    • /
    • 2001
  • The objectives of this paper include the development of an agile prototype of SFFS, the $CAFL^{VM}$(Computer Aided fabrication of Lamination for Various Material), which is suitable for the multi-item and small-quantity production and various material fabrication. This paper includes remodeling of the layer slices for the 2D cutting, supplementing information of the layer slices and developing process conditions to fabricate products of various shape. And also includes developing control hardware as well as software by enhancing BOF of the manipulator to 3 degree for the precise 2D cutting. It will generate optimal layer trajectory considering the dynamic characteristics of the laser beam. The system can be used as a competitive agile protype system in terms of various materials, fabrication speed, and accuracy by CAD modeling precise layer slicing, material development, robot path control, and optimization of the support structure.

  • PDF

위상이동 실시간 홀로그래픽 간섭법을 이용한 파이프의 내부결함 측정법 (Measurement Mothod for Internal Defect of Pipe by Using Phase Shifting Real-Time Holographic Interferometry)

  • 강영준;문상준
    • 한국정밀공학회지
    • /
    • 제13권2호
    • /
    • pp.68-75
    • /
    • 1996
  • More accurate inspection method for facilities of nuclear power plants is required to guarantee the continuous and stable energy supply. The portion of inspection for pipes and pressure vessels is relatively big in the power plants. Conventional inspection methods using ultrasonic wave, x-ray and eddy current for nondestructive testing in nuclear power plants have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money and manpower. And the area to be inspected is limited by the location of probe or film. These difficulties make the inspection into a time-consuming work. We propose an optical defect detection method using phase shifting realtime holographic interferometry. This method has an advantage that the inspection can be performed at a time for relatively wide area illuminated by the laser beam, a coherent light source and can help an inspector recognize not only defects but also the high stressed areas. In this paper we show that the quantitative measurement using holographic interferometry and image processing for defect in pressure vessels is possible.

  • PDF