• Title/Summary/Keyword: Wide laser beam

Search Result 67, Processing Time 0.028 seconds

Wide Beam Optical System for the Laser Materials Processing (레이저 재료 가공을 위한 광폭빔 광학 장치)

  • 김재도;조응산;전병철
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.24-29
    • /
    • 1998
  • A new wide laser beam optical system for the laser materials processing has been developed with a polygonal mirror. It consists of polygonal mirror and cooling part that prevents the surface of rotating polygonal mirror from damage by heat. The polygonal minors have been designed and made as 24 and 30 facets in pyramid type. This system provides a uniform linear laser heat source with the surface scanning width from 15 to 50mm according to the scanning height To examine the wide laser beam, He-Ne laser is used. Also, Acryl is used to confirm the laser beam pattern by bum-pattern print To analyze the energy distribution of the wide laser ben empirical values and theoretical values are compared and discussed. To improve the efficiency of the wide laser beam optical system, methods are suggested by the optical theories. For larger area processing like turbine blade, drawing blade, cold roller and guide plate, optimal overlapping locations have been calculated and analyzed by geometric and optical theories.

  • PDF

10㎛-wide Pattern Engraving using Metal Specimens coated with a heterogeneous metal for Printed Electronics (이종 금속이 코팅된 금속소재를 이용한 인쇄전자소자용 선폭 10㎛급 패턴 가공)

  • Sohn, Hyonkee;Cao, Binh Xuan;Cho, Yong-Kwon;Shin, Dong-Sig;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.17 no.4
    • /
    • pp.20-23
    • /
    • 2014
  • In printed electronics, printing rolls are used to transfer electronic ink onto a flexible substrate. Generally printing rolls are patterned in microscale by the indirect laser method. Since based on the wet etch process, the indirect method is neither environment-friendly nor suitable for making a printing roll with patterns narrower than $20{\mu}m$. In this paper, we have directly engraved micro-patterns into a Zn-coated metal specimens using a picosecond laser in order both to engrave $10{\mu}m$-wide patterns and to improve the pattern profile. Experiments showed that it is possible to engrave $10{\mu}m$-wide patterns with an a rectangular-shaped profile which is necessary for the dimensionally accurate printing.

  • PDF

Direct UV laser projection ablation to engrave 6㎛-wide patterns in a buildup film (빌드업 필름의 선폭 6㎛급 패턴 가공을 위한 직접식 UV 레이저 프로젝션 애블레이션)

  • Sohn, Hyonkee;Park, Jong-Sig;Jeong, Jeong-Su;Shin, Dong-Sig;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.17 no.3
    • /
    • pp.19-23
    • /
    • 2014
  • To directly engrave circuit-line patterns as wide as $6{\mu}m$ in a buildup film to be used as an IC substrate, we applied a projection ablation technique in which an 8 inch dielectric ($ZrO_2/SiO_2$) mask, a DPSS 355nm laser instead of an excimer laser, a ${\pi}$-shaper and a galvo scanner are used. With the ${\pi}$-shaper and a square aperture, the Gaussian beam from the laser is shaped into a square flap-top beam. The galvo scanner before the $f-{\theta}$ lens moves the flat-top beam ($115{\mu}m{\times}105{\mu}m$) across the 8 inch dielectric mask whose patterned area is $120mm{\times}120mm$. Based on the results of the previous research by the authors, the projection ratio was set at 3:1. Experiments showed that the average width and depth of the engraved patterns are $5.41{\mu}m$ and $7.30{\mu}m$, respectively.

  • PDF

High power CO$_{2}$laser beam welding of ASIA 316 stainless steel

  • 김재도;조용무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.321-327
    • /
    • 1991
  • High power laser beams are used in a wide variety of materials processing applications such as cutting, welding, drilling and surface treatment. The CO$\sub$2/ laser is increasingly used in laser beam welding because of the highly potential advantages. High power laser welding is a high energy density, no filler metals and low heat input process to join metals. As the comparison with the conventiona welding, precision work and good fit-up to join the metals are required and maintenance is expensive at present. The principal variables of laser beam welding are the laser beam power, travel speed and bean spot size. The penetration depth during laser beam welding is directly related to the power density of the laser beam. Generally, for a constant beam size, the penetration depth increases with increasing laser beam power.

Study of 3 dimensional wide area continuous laser micro patterning (3차원 대면적 연속 마이크로 레이저 패터닝을 위한 연구)

  • Kim, Kyunghan;Sohn, Hyonkee;Lee, Jaehoon
    • Laser Solutions
    • /
    • v.18 no.4
    • /
    • pp.1-5
    • /
    • 2015
  • For continuous laser micro patterning on three-dimensional free form surface, innovative laser system is developed. The two axis galvanometer is combined with the dynamic focusing unit to increase optical distance. Also, it is synchronized with the 3 axis mechanical system. To determine laser machining sequence, laser CAM system is developed. It can make possible of 3D surface micro patterning under $25{\mu}m$ pattern width. The uniformity of pattern width is about 2.8% and it is validated that focal plane is well conserved by the dynamic focusing unit. Velocity and positional information of 1 axis is stage is fed to the scanner control board by the encoder signal and it makes possible real time synchronization. With this system, possible patterning volume is enlarged from $40{\times}40mm^2$ to $40{\times}120{\times}30mm^3$.

Diagnostics of Magnetron Sputtering Plasmas: Distributions of Density and Velocity of Sputtered Metal Atoms

  • Sasaki, Koichi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.98-99
    • /
    • 2012
  • Deposition of thin films using magnetron sputtering plasmas is a well-developed, classical technology. However, detailed investigations using advanced diagnostics are insufficient in magnetron sputtering, in comparison with plasma-aided dry etching and plasma-enhanced chemical vapor deposition. In this talk, we will show examples of diagnostic works on magnetron sputtering employing metal targets. Diagnostic methods which have fine spatial resolutions are suitable for magnetron sputtering plasmas since they have significant spatial distributions. We are using two-dimensional laser-induced fluorescence spectroscopy, in which the plasma space is illuminated by a tunable laser beam with a planer shape. A charge-coupled device camera with a gated image intensifier is used for taking the picture of the image of laser-induced fluorescence formed on the planer laser beam. The picture of laser-induced fluorescence directly represents the two-dimensional distribution of the atom density probed by the tunable laser beam, when an intense laser with a relatively wide line-width is used. When a weak laser beam with a relatively narrow linewidth is used, the laser-induced fluorescence represents the density distribution of atoms which feel the laser wavelength to be resonant via the Doppler shift corresponding to their velocities. In this case, we can obtain the velocity distribution function of atoms by scanning the wavelength of the laser beam around the line center.

  • PDF

DPSS UV laser projection ablation of 10μm-wide patterns in a buildup film using a dielectric mask (Dielectric 마스크 적용 UV 레이저 프로젝션 가공을 이용한 빌드업 필름 내 선폭 10μm급 패턴 가공 연구)

  • Sohn, Hyonkee;Park, Jong-Sig;Jeong, Su-Jeong;Shin, Dong-Sig;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.16 no.3
    • /
    • pp.27-31
    • /
    • 2013
  • To engrave high-density circuit-line patterns in IC substrates, we applied a projection ablation technique in which a dielectric ($ZrO_2/SiO_2$) mask, a DPSS UV laser instead of an excimer laser, a refractive beam shaping optics and a galvo scanner are used. The line/space dimension of line patterns of the dielectric mask is $10{\mu}m/10{\mu}m$. Using a ${\pi}$ -shaper and a square aperture, the Gaussian beam from the laser is shaped into a square flap-top beam; and a telecentric f-${\theta}$ lens focuses it to a $115{\mu}m{\times}105{\mu}m$ flat-top beam on the mask. The galvo scanner before the f-${\theta}$ lens moves the beam across the scan area of $40mm{\times}40mm$. An 1:1 projection lens was used. Experiments showed that the widths of the engraved patterns in a buildup film ranges from $8.1{\mu}m$ to $10.2{\mu}m$ and the depths from $8.8{\mu}m$ to $11.7{\mu}m$. Results indicates that it is required to increase the projection ratio to enhance profiles of the engraved patterns.

  • PDF

Investigation of acoustic monitoring on laser shock cleaning process (레이저 충격파 클리닝 공정에서 음향 모니터링에 관한 연구)

  • 김태훈;이종명;조성호;김도훈
    • Laser Solutions
    • /
    • v.6 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • A laser shock cleaning technology is a new dry cleaning methodology for the effective removal of small particles from the surface. This technique uses a plasma shock wave produced by a breakdown of air due to an intense laser pulse. In order to optimize the laser shock cleaning process, it needs to evaluate the cleaning performance quantitatively by using a monitoring technique. In this paper, an acoustic monitoring technique was attempted to investigate the laser shock cleaning process with an aim to optimize the cleaning process. A wide-band microphone with high sensitivity was utilized to detect acoustic signals during the cleaning process. It was found that the intensity of the shock wave was strongly dependent on the power density of laser beam and the gas species at the laser beam focus. As a power density was larger, the shock wave became stronger. It was also seen that the shock wave became stronger in the case of Ar gas compared with air and N$_2$ gas.

  • PDF

Wide-fan-angle Flat-top Linear Laser Beam Generated by Long-pitch Diffraction Gratings

  • Lee, Mu Hyeon;Ryu, Taesu;Kim, Young-Hoon;Yang, Jin-Kyu
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.500-505
    • /
    • 2021
  • We demonstrated a wide-fan-angle flat-top irradiance pattern with a very narrow linewidth by using an aspheric lens and a long-pitch reflective diffraction grating. First, we numerically designed a diffraction-based linear beam homogenizer. The structure of the Al diffraction grating with an isosceles triangular shape was optimized with 0.1-mm pitch, 35.5° slope angle, and 0.02-mm radius of the rounding top. According to the numerical results, the linear uniformity of the irradiance was more sensitive to the working distance than to the shape of the Al grating. The designed Al grating reflector was fabricated by using a conventional mold injection and an Al coating process. A uniform linear irradiance of 405-nm laser diode with a 100-mm flat-top length and 0.176-mm linewidth was experimentally demonstrated at 140-mm working distance. We believe that our proposed linear beam homogenizer can be used in various potential applications at a precise inspection system such as three-dimensional morphology scanner with line lasers.