• Title/Summary/Keyword: Wide fixture

Search Result 24, Processing Time 0.019 seconds

A Development of Fixture Planning Module using Machine Learning (기계 학습을 이용한 치구 공정 계획 모듈의 개발)

  • 김선우;이수홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.111-121
    • /
    • 1997
  • This study intends to develop a fixture planning module as a part of the planning system for cutting. The fixture module uses machine learning method to reuse previous failure results so that the system can reduce the repeated failures. Machine learning is one of efforts to incorporate human reasoning ability into a computerized system. A human expert designs better than a novice does because he has a wide experience in a specific area. This study implements the machine learning algorithm to have a wide experience in the fixture planning area as a human expert does. When the fixture planner finds a setup failure for the suggested operations by a process planner, it makes the process planner store its attributes and other information for the failed setup. Then the process planner applies the learned knowledge when it meets a similar case so that the planner can reduce possibility of setup failure. Also the system can teach a novice user by showing a failed setup with a modified setup.

  • PDF

A Study on Machining Distortion of Airfoil Effected by Fixture and Process (에어포일 기계가공 변형 연구 : 지그와 가공단계의 영향)

  • Ra, Kyeong-Woon;Ji, Seong-Bum;Jo, Yeong-Jin;Park, Je-Hong;Seo, Sang-Won;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.465-470
    • /
    • 2014
  • Thin and wide airfoils are difficult to be machined precisely because they are deformed during and after machining processes. This paper presents the results of the airfoil deformation measured by three-dimensional (3D) scanning equipment. It also discusses the influences of fixture and the machining process on the distortion of the thin airfoil. The simple fixture bended the thin airfoil to a U-shape at the first process, and the vacuum fixture decreased the distortion of the machined airfoil at the second process. The long and thin airfoil supported by two points was buckled during the machining at its two end-regions at the third process. Results from this study suggest that use of vacuum fixture decreases the machining distortion of thin and wide airfoils.

Effect of morphology and diameter of implant fixture-abutment connection on mechanical failure of implants (임플랜트 고정체-지대주 연결부의 형태와 직경이 임플랜트의 기계적 실패에 미치는 영향)

  • Yun, Bo-Hyeok;Shin, Hyon-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.9
    • /
    • pp.644-655
    • /
    • 2015
  • Purpose: This study was conducted to evaluate the effect of the fixture abutment connection type and diameter on the screw joint stability in external butt joint for 2nd surgery and internal cone connected type implant system for 1st and 2nd surgery using ultimate fracture strength. Materials and Methods: USII system, SSII system and GSII system of Osstem Implant were used. Each system used the fixture with two different diameters and cement-retained abutments, and tungsten carbide / carbon coated abutment screws were used. Disc shaped stainless steel metal tube was attached using resin-based temporary cement. The experimental group was divided into seven subgroups, including the platform switching shaped specimen that uses a regular abutment in the fixture with a wide diameter in USII system. A static load was increased to the metal tube at 5mm deviated point from the implant central axis until it reached the compression bending strength at a rate of 1mm/min. Then the deformations and patterns of fracture in threaded connection were compared. Results and Conclusion: 1. In the comparison between the Regular diameter, compression bending strength of SSII system was higher than USII system and GSII system. There was no significant difference between USII system and GSII system. 2. In the comparison between wide diameter, compression bending strength was increased in the order of GSII system, USII system, and SSII system. 3. In comparison between the implant diameter, compression bending strength of the wide diameter was greater than the regular diameter in any system(P<0.05). 4. There was no significant difference between the platform switching (III group) and the regular diameter (I group) in USII system. 5. In USII system, fracture of abutment screw and deformation of both fixture and abutment were observed in I, II and III subgroups. 6. Failure pattern of SSII system, which was the fracture of abutment screw and deformation of the abutment and fixture, was observed in both IV and V subgroups. Fracture of some fixtures was observed in subgroup V. 7. Failure pattern of GSII system, which was the fracture of the abutment screw and deformation of the fixture and the abutment, was observed in both VI and VII subgroups. Apart from other subgroups, subgroup VII demonstrated no bending neither the fracture at the top of the fixture. The compressive deformation of internal slope in the fixture was the only thing observed in subgroup VII.

A 3-dimensional Finite Element Analysis of Stress Distribution in the Supporting Bone by Diameters of Dental Implant Fixture (골유착성 치과 임플랜트 고정체 직경에 따른 지지골의 응력분포에 관한 삼차원 유한요소 분석적 연구)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 2004
  • The objective of this finite element method study was to analyze the stress distribution induced on a supporting bone by 3.75mm, 4.0mm, 5.0mm diameter of dental implant fixture(13mm length). 3-dimensional finite element models of simplified gold alloy crown(7mm height) and dental implant structures(gold cylinder screw, gold cylinder, abutment screw, abutment, fixture and supporting bone(cortical bone, cancellous bone) designs were subjected to a simulated biting force of 100 N which was forced over occlusal plane of gold alloy crown vertically. Maximum von Mises stresses(MPa) under vertical loading were 9.693(3.75mm diameter of fixture), 8.885(4.0mm diameter of fixture), 6.301(5.0mm diameter of fixture) and the highest von Mises stresses of all models were concentrated in the surrounding crestal cortical bone. The wide diameter implant was the good choice for minimizing cortical bone-fixture interface stress.

  • PDF

AR-based Tangible Interaction Using a Finger Fixture for Digital Handheld Products (손가락 고정구를 이용한 휴대용 전자제품의 증강현실기반 감각형 상호작용)

  • Park, Hyung-Jun;Moon, Hee-Cheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • In this paper, we propose an AR-based tangible interaction using a finger fixture for virtual evaluation of digital handheld products. To realize tangible interaction between a user and a product in a computer-vision based AR environment, we uses two types of tangible objects: a product-type object and a finger fixture. The product-type object is used to acquire the position and orientation of the product, and the finger fixture is used to recognize the position of a finger tip. The two objects are fabricated by RP technology and AR markers are attached to them. The finger fixture is designed to satisfy various requirements with an ultimate goal that the user holding the finger fixture in his or her index finger can create HMI events by touching specified regions (buttons or sliders) of the product-type object with the finger tip. By assessing the accuracy of the proposed interaction, we have found that it can be applied to a wide variety of digital handheld products whose button size is not less than 6 mm. After performing the design evaluation of several handheld products using the proposed AR-based tangible interaction, we received highly encouraging feedback from users since the proposed interaction is intuitive and tangible enough to provide a feeling like manipulating products with human hands.

THREE-DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF SINGLE IMPLANT RESTORATION USING DIFFERENT FIXTURE AND ABUTMENT SCREW DIAMETERS (단일치 임플랜트 지지 보철물에서 고정체와 지대주 나사 직경의 차이에 따른 삼차원 유한요소법적 응력 분석)

  • Kwon Joo-Hong;Choi Min-Ho;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.1
    • /
    • pp.105-119
    • /
    • 2005
  • Statement of problem. As the effects of the various diameters of fixture and abutment screw on stress distribution was not yet examined, this study focused on the different design of single implant restoration using three dimensional finite element analysis. Purpose. This study was to compare five different fixture-abutment combinations for single implant supported restorations with different fixture and abutment screw diameters. Material of methods. The five kinds of finite element models were designed by 3 diameter fixtures ($\oslash$3.3, 3.75, 5.0 mm) with 3 different abutment screws $\oslash$1.5, 1.7, 2.0 mm). The crown for mandibular first molar was made using UCLA abutment according to Wheeler's anatomy. 244 N was applied at the central fossa with two different loading directions, vertically and obliquely (30$^{\circ}$) and at the buccal cusp vertically. Maximum von Mises stresses were recorded and compared in the supporting bone, crowns, fixtures, and abutment screws. Results. 1. The stresses in supporting bone and implant-abutment structure under oblique loading were greater than those under vertical or offset loading. The stresses under vertical loading were the least among 3 loading conditions regardless of the implant and abutment screw diameters. 2. The stresses in the narrow implants were greater than the wider implants. The narrow implant with narrow abutment screw showed highest stresses in the lingual crest, but the narrow implant with standard abutment screw showed highest stress in abutment screw. 3. The stresses of abutment screws were influenced by the diameter of fixtures and loading conditions. The wide implants showed least difference between two different abutment screw diameters. Conclusions. The wide implants showed lesser stresses than the narrow implants and affected least by the different abutment screw diameters. The narrow implants with standard abutment screw showed highest stresses in the lingual bony crest under oblique loading.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO PLATFORM WIDTH OF FIXTURE (임플란트 고정체의 platform의 크기에 따른 유한요소법적 응력분석)

  • Chung Kyung-Min;Chung Chae-Heon;Jeong Seung-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.674-688
    • /
    • 2003
  • Statement of Problem : With increasing demand of the implant-supported prosthesis, it is advantageous to use the different platform width of the fixture according to bone quantity and quality of the patients. Purpose : The purpose of this study was to assess the loading distributing characteristics of two implant designs according to each platform width of fixture, under vertical and inclined loading using finite element analysis. Material and method : The two kinds of finite element models were designed according to each platform width of future (4.1mm restorative component x 11.5mm length, 5.0mm wide-diameter restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction, 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction and 200N at the buccal cusp in a 300 transverse direction individually Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. Results : The stresses were concentrated mainly at the cortex in both vertical and oblique load ing but the stresses in the cancellous bone were low in both vertical and oblique loading. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading. Increasing the platform width of the implant fixture decreased the stress in the supporting bone, future and abutment screw. Increased the platform width of fixture decreased the stress in the crown and platform. Conclusion : Conclusively, this investigation provides evidence that the platform width of the implant fixture directly affects periimplant stress. By increasing the platform width of the implant fixture, it showed tendency to decreased the supporting bone, future and screw. But, further clinical studies are necessary to determine the ideal protocol for the successful placement of wide platform implants.

STRESS ANALYSIS OF SUPPORTING TISSUES ACCORDING TO IMPLANT FIXTURE DIAMETER AND RESIDUAL ALVEOLAR BONE WIDTH (치조골 폭경과 임플랜트 고정체의 직경에 따른 지지조직의 응력분포)

  • Han, Sang-Un;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.506-521
    • /
    • 2007
  • Statement of problem: The cumulative success rate of wide implant is still controversial. Some previous reports have shown high success rate, and some other reports shown high failure rate. Purpose: The aim of this study was to analyze, and compare the biomechanics in wide implant system embeded in different width of crestal bone under different occlusal forces by finite element approach. Material and methods: Three-dimensional finite element models were created based on tracing of CT image of second premolar section of mandible with one implant embedded. One standard model (6mm-crestal bone width, 4.0mm implant diameter central position) was created. Varied crestal dimension(4, 6, 8 mm), different diameter of implants(3.3, 4.0, 5.5, 6.0mm), and buccal position implant models were generated. A 100-N vertical(L1) and 30 degree oblique load from lingual(L2) and buccal(L3) direction were applied to the occlusal surface of the crown. The analysis was performed for each load by means of the ANSYS V.9.0 program. Conclusion: 1. In all cases, maximum equivalent stress that applied $30^{\circ}$ oblique load around the alveolar bone crest was larger than that of the vertical load. Especially the equivalent stress that loaded obliquely in buccal side was larger. 2. In study of implant fixture diameter, stress around alveolar bone was decreased with the increase of implant diameter. In the vertical load, as the diameter of implant increased the equivalent stress decreased, but equivalent stress increased in case of the wide implant that have a little cortical bone in the buccal side. In the lateral oblique loading condition, the diameter of implant increased the equivalent stress decreased, but in the buccal oblique load, there was not significant difference between the 5.5mm and 6.0mm as the wide diameter implant. 3. In study of alveolar bone width, equivalent stress was decreased with the increase of alveolar bone width. In the vertical and oblique loading condition, the width of alveolar bone increased 6.0mm the equivalent stress decreased. But in the oblique loading condition, there was not a difference equivalent stress at more than 6.0mm of alveolar bone width. 4. In study of insertion position of implant fixture, even though the insertion position of implant fixture move there was not a difference equivalent stress, but in the case of little cortical bone in the buccal side, value of the equivalent stress was most unfavorable. 5. In all cases, it showed high stress around the top of fixture that contact cortical bone, but there was not a portion on the bottom of fixture that concentrate highly stress and play the role of stress dispersion. These results demonstrated that obtaining the more contact from the bucco-lingual cortical bone by installing wide diameter implant plays an important role in biomechanics.

FINITE ELEMENT ANALYSIS OF FIN-TYPE IMPLANT FIXTURES (Fin type 임플랜트 고정체의 유한요소법적 분석)

  • Kim, Su-Gwan;Chon, Chang-Gil;Hwang, Gab-Woon;Kim, Byung-Ock
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.1
    • /
    • pp.14-25
    • /
    • 2003
  • The purpose of this study was to analyze the stress pattern in different bone densities surrounding fin-type implant fixtures under the vertical and inclined loads ($30^{\circ}) of 200N. Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the loads were calculated by using the finite element method. Four different types of bicon implant fixture were used for this study. The geometries of implant fixtures to develop the model were used by a sales brochure and profile project. Three-dimensional finite element model of the mandible was developed with 6.0 mm implant in diameter wurrounded by approximately 2.5 mm of bone. Bone densities were classified according to the elastic modulus of the tree. The finite element program MSC PATRAN (MSC, Software Corp., USA) were used for analysis of stress distribution. The value of the Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the vertical and inclined loads were decreased when the diameter of implant fixture was increased, and increased when the elastic modulus was decreased. The stress on implant fixture under the vertical and inclined loads was distributed through the length of implant fixtures in D3 and D4. The distribution of stress was influenced by the direction of loads. In the wide diameter of implants, the stress was developed at outer surface of bone. In conclusion, this study suggest that stress developing on the peri-implant tissues might be influenced by the dimension of implant, elastic modulus of bone, and direction of loads.