• Title/Summary/Keyword: Wide area energy

Search Result 288, Processing Time 0.026 seconds

Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading

  • Fathuldeen, Saja Waleed;Qissab, Musab Aied
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.67-80
    • /
    • 2019
  • Strengthening with near surface mounted carbon fibre reinforced polymers (NSM-CFRP) is a strengthening technique that have been used for several decades to increase the load carrying capacity of reinforced concrete members. In Iraq, many concrete buildings and bridges were subjected to a wide range of damage as a result of the last war and many other events. Accordingly, there is a progressive increase in the strengthening of concrete structures, bridges in particular, by using CFRP strengthening techniques. Near-surface mounted carbon fibre polymer has been recently proved as a powerful strengthening technique in which the CFRP strips are sufficiently protected against external environmental conditions especially the high-temperature rates in Iraq. However, this technique has not been examined yet under repeated loading conditions such as traffic loads on bridge girders. The main objective of this research was to investigate the effectiveness of NSM-CFRP strips in reinforced concrete beams under repeated loads. Different parameters such as the number of strips, groove size, and two types of bonding materials (epoxy resin and cement-based adhesive) were considered. Fifteen NSM-CFRP strengthened beams were tested under concentrated monotonic and repeated loadings. Three beams were non-strengthened as reference specimens while the remaining were strengthened with NSM-CFRP strips and divided into three groups. Each group comprises two beams tested under monotonic loads and used as control for those tested under repeated loads in the same group. The experimental results are discussed in terms of load-deflection behavior up to failure, ductility factor, cumulative energy absorption, number of cycles to failure, and the mode of failure. The test results proved that strengthening with NSM-CFRP strips increased both the flexural strength and stiffness of the tested beams. An increase in load carrying capacity was obtained in a range of (1.47 to 4.49) times that for the non-strengthened specimens. Also, the increase in total area of CFRPs showed a slight increase in flexural capacity of (1.02) times the value of the control strengthened one tested under repeated loading. Increasing the total area of CFRP strips resulted in a reduction in ductility factor reached to (0.71) while the cumulative energy absorption increased by (1.22) times the values of the strengthened reference specimens tested under repeated loading. Moreover, the replacement of epoxy resin with cement-based adhesive as a bonding material exhibited higher ductility than specimen with epoxy resin tested under monotonic and repeated loading.

Electromagnetic Interference of GMDSS MF/HF Band by Offshore Wind Farm (해상풍력 발전단지에 의한 GMDSS MF/HF 대역 전자파 간섭 영향 연구)

  • Oh, Seongwon;Park, Tae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • Recently, the share of wind power in energy markets has sharply increased with the active development of renewable energy internationally. In particular, large-scale wind farms are being developed far from the coast to make use of abundant wind resources and to reduce noise pollution. In addition to the electromagnetic interference (EMI) caused by offshore wind farms to coastal or air surveillance radars, it is necessary to investigate the EMI on global maritime distress and safety system (GMDSS) communications between ship and coastal stations. For this purpose, this study investigates whether the transmitted field of MF/HF band from a ship would be subject to interference or attenuation below the threshold at a coastal receiver. First, using geographic information system digital maps and 3D CAD models of wind turbines, the area of interest is electromagnetically modeled with patch models. Although high frequency analysis methods like Physical Optics are appropriate to analyze wide areas compared to its wavelength, the high frequency analysis method is first verified with an accurate low frequency analysis method by simplifying the surrounding area and turbines. As a result, the received wave power is almost the same regardless of whether the wind farms are located between ships and coastal stations. From this result, although wind turbines are large structures, the size is only a few wavelengths, so it does not interfere with the electric field of MF/HF distress communications.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

Network Capacity Design in the local Communication and Computer Network for Consumer Portal System (전력수용가포털을 위한 구내 통신 및 컴퓨터 네트워크 용량 설계)

  • Hong, Jun-Hee;Choi, Jung-In;Kim, Jin-Ho;Kim, Chang-Sub;Son, Sung-Young;Son, Kwang-Myung;Jang, Gil-Soo;Lee, Jea-Bok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.89-100
    • /
    • 2007
  • Consumer Portal is defined as "a combination of hardware and software that enables two-way communication between energy service provider(ESP, like KEPCO) and equipment within the consumer's premises". The portal provides both a physical link(between wires, radio waves, and other media) and a logical link(translating among language-like codes and etiquette-like protocols) between in-building and wide-area access networks. Thus, the consumer portal is an important, open public shared infrastructure in the future vision of energy services. In this paper, we describe a new methodology for local communication and computer network capacity design of consumer portal, and also presents capacity calculation method using a network system limitation factors. By the approach, we can check into the limitations of existing methods, and propose an improved data processing algorithm that can expand the maximum number of the networked end-use devices up to $30{\sim}40$ times. For validation, we applies the proposed methode to our real system design. Our contribution will help electrical power information network design.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

Flow Analysis of the Environmental Chemical Reaction Processes at Power Plant in accordance with the Baffle Structure

  • Jeong, Yeon-Tae;Hur, Kwang-Beom;Gil, Joon-Woo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.433-436
    • /
    • 2016
  • In the area of environmental chemistry of power plant, flow analysis of the reactor with built-in impeller is a very important part from the perspective of the improvement of the efficiency of the entire process. As a wide range of methods are being proposed for the analysis of the flow pattern within the reactor, this study analyzed the flow within the reactor according to the baffle structure (height) installed on the internal wall of the reactor in order to improve the reaction efficiency through the inducing of the up and down stirring with the reactor. As the results of the execution of the flow analysis for each of a diverse range of cases by utilizing the Computational Fluid Dynamics (CFD) method, it was possible to confirm that the flow is markdely improved by inducing the up and down stirring among the reactants within the reactor if the baffle is elevated to the level below the water surface. In particular, as the results of the analysis of the general cases in which the baffle is elevated all 4 steps and the cases in which the baffle is elevated only 2 steps, elevating the baffle only 2 steps achieve the same effect as the elevating of the baffle by 4 steps. Therefore, it was possible to expect to improve the efficiency with out the need to increase the use of electric power substantially if the outcomes of this study is applied to the actual sites of power plants in the future.

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • Park, Je-Sik;Lee, Cheol-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

K-Ar Ages of Cretaceous Fossil Sites, Seoyuri, Hwasun, Southern Korea (화순 서유리의 백악기 화석산지에 대한 K-Ar 연대)

  • Kim, Cheong Bin;Kang, Seong Seung
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.618-626
    • /
    • 2012
  • The Cretaceous fossil sites of Seoyuri in Hwasun was designated as the Korean Natural Monument No. 487 in November 2007. It provides important resources for paleoenvironmental studies, including theropod trackways, plant fossils, mudcracks, ripple marks, and horizontal bedding. The Cretaceous sedimentary strata contain a wide variety of volcanic pebbles, 5-40 cm in diameter in the lower portion and are overlain by the Late Cretaceous Hwasun andesite. Whole rock absolute K-Ar age determinations were performed on six volcanic pebbles from the Cretaceous sedimentary strata and on two samples from the overlaying Hwasun andesite. These ages indicate that the rocks belong to the period between the Turonian of the late Cretaceous (91-70 Ma) and the Pliocene age of the early Cenozoic ($63.4{\pm}1.2$ and $62.1{\pm}1.2$ Ma). Thus, the K-Ar ages indicate that the maximum geological age of the dinosaur track-bearing sedimentary deposits is about ca. 70 Ma. Therefore, it suggests that the age is comparable to the formation ages of the dinosaur footprints-bearing deposits in Sado area of Yeosu (71-66Ma).

An Experimental Study on the Heat Transfer Characteristics to Enhance the Artificial Hydrate Formation Performance (전열특성을 이용한 가스하이드레이트 인공제조 성능향상에 대한 실험적 연구)

  • Shin, Chang-Hoon;Park, Seoung-Su;Kwon, Ok-Bae;Shin, Kwang-Sik;Choi, Yang-Mi;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.515-518
    • /
    • 2007
  • Gas hydrates are ice-like crystalline compounds that form under low temperature and elevated pressure conditions. Recently, gas hydrates present a novel means for natural gas storage and transportation with potential applications in a wide variety of areas. An important property of hydrates that makes them attractive for use in gas storage and transportation is their very high gas-to-sol id ratio. In addition to the high gas content, gas hydrates are remarkably stable. The main barrier to development of gas hydrate technology is the lack of an effective mass production method of gas hydrate in solid form. In this study, some performance comparison among several cases classified by different volume sizes of solution were carried to identify the characteristics due to the volume increment. And it is found that one of the main reasons disturbing hydrate formation is related to the lack of cooling heat transfer due to the volume increase of the solution. So, three kinds of heat transfer plates which have different shapes and cross sectional areas were made and tested for the performance comparison following to the shape and area of each plate. Finally it is clarified that the heat transfer is one of the major factors effecting hydrate formation performance and the installation of heat transfer plate can enhance the formation performance especially not in terms of the quantity but the speed.

  • PDF

Intravenous Toxicity Study of Water-soluble Ginseng Pharmacopuncture in SD Rats

  • Yu, Jun-Sang;Sun, Seung-Ho;Lee, Kwang-Ho;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.18 no.4
    • /
    • pp.38-44
    • /
    • 2015
  • Objectives: Radix Ginseng has been used for thousands of years to treat a wide variety of diseases. Radix ginseng has also been used as a traditional medicine for boosting Qi energy and tonifying the spleen and lungs. Traditionally, its effect could be obtained orally. Nowadays, a new method, the injection of herbal medicine, is being used. This study was performed to investigate the single-dose intravenous toxicity of water-soluble ginseng pharmacopuncture (WSGP) in Sprague-Dawley (SD) rats. Methods: All experiments were carried out at Biotoxtech, an institute authorized to perform non-clinical studies under the regulation of Good Laboratory Practice (GLP). At the age of six weeks, 40 SD rats, 20 male rats and 20 female rats, were allocated into one of 4 groups according to the dosages they would receive. The WSGP was prepared in the Korean Pharmacopuncture Institute under the regulation of Korea-Good Manufacturing Practice (K-GMP). Dosages of WSGP were 0.1, 0.5 and 1.0 mL/animal for the experimental groups, and normal saline was administered to the control group. The rat's general conditions and body weights, the results of their hematological and biochemistry tests, and their necropsy and histopathological findings were investigated to identify the toxicological effect of WSGP injected intravenously. The effect was examined for 14 days after the WSGP injection. This study was performed under the approval of the Institutional Animal Ethics Committee of Biotoxtech. Results: No deaths were found in this single-dose toxicity test on the intravenous injection of WSGP, and no significant changes in the rat's general conditions and body weights, the results on their hematological and biochemistry test, and their necropsy findings were observed during the test. The local area of the injection site showed minial change. The lethal dose was assumed to be over 1.0 mL/animal in both sexes. Conclusion: These results indicate that WSGP is safe at dosages up to 1 mL/animal.