• Title/Summary/Keyword: Wide Band-gap

Search Result 245, Processing Time 0.035 seconds

Preparation of Novel Magnesium Precursors and MgO Thin Films Growth by Atomic Layer Deposition (ALD)

  • Kim, Hyo-Suk;park, Bo Keun;Kim, Chang Gyoun;Son, Seung Uk;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.364.2-364.2
    • /
    • 2014
  • Magnesium oxide (MgO) thin films have attracted great scientific and technological interest in recent decades. Because of its distinguished properties such as a wide band gap (7.2 eV), a low dielectric constant (9.8), a low refractive index, an excellent chemical, and thermal stability (melting point=$2900^{\circ}C$), it is widely used as inorganic material in diverse areas such as fire resistant construction materials, optical materials, protective layers in plasma display panels, buffer layers of multilayer electronic/photonic devices, and perovskite ferroelectric thin films. Precursor used in the ALD requires volatility, stability, and low deposition temperature. Precursors using a heteroleptic ligands with different reactivity have advantage of selective reaction of the heteroleptic ligands on substrate during ALD process. In this study, we have synethesized new heteroleptic magnesium precursors ${\beta}$-diketonate and aminoalkoxide which have been widely used for the development of precursor because of the excellent volatility, chelating effects by increasing the coordination number of the metal, and advantages to synthesize a single precursor. A newly-synthesized Mg(II) precursor was adopted for growing MgO thin films using ALD.

  • PDF

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF

A Study on the Efficiency Prediction of Low-Voltage and High-Current dc-dc Converters Using GaN FET-based Synchronous Rectifier (GaN FET 기반 동기정류기를 적용한 저전압-대전류 DC-DC Converter 효율예측)

  • Jeong, Jea-Woong;Kim, Hyun-Bin;Kim, Jong-Soo;Kim, Nam-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.297-304
    • /
    • 2017
  • The purpose of this paper is to analyze losses because of switching devices and the secondary side circuit diodes of 500 W full bridge dc-dc converter by applying gallium nitride (GaN) field-effect transistor (FET), which is one of the wide band gap devices. For the detailed device analysis, we translate the specific resistance relation caused by the GaN FET material property into algebraic expression, and investigate the influence of the GaN FET structure and characteristic on efficiency and system specifications. In addition, we mathematically compare the diode rectifier circuit loss, which is a full bridge dc-dc converter secondary side circuit, with the synchronous rectifier circuit loss using silicon metal-oxide semiconductor (Si MOSFET) or GaN FET, which produce the full bridge dc-dc converter analytical value validity to derive the final efficiency and loss. We also design the heat sink based on the mathematically derived loss value, and suggest the heat sink size by purpose and the heat divergence degree through simulation.

Fabrication of 3C-SiC micro heaters and its characteristics (3C-SiC 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.311-315
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on AlN(0.1 $\mu$m)/3C-SiC(1.0 $\mu$m) suspended membranes by surface micro-machining technology. The 3C-SiC and AlN thin films which have wide energy band gap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3CSiC RTD(resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR(thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 ppm/$^{\circ}C$ within a temperature range from 25 $^{\circ}C$ to 50 $^{\circ}C$ and -1040 ppm/$^{\circ}C$ at 500 $^{\circ}C$. The micro heater generates the heat about 500 $^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than Pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

Properties of $Zn_xSnO_2$ Nanorods Synthesized by Hytrothermal Method

  • Yeo, Chang-Su;Lee, Gwan-Ho;Kang, Hee-Kyoung;Lee, Kyung-Hee;Yu, Byung-Yong;Song, Jong-Han;Chae, Kuen-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.313-313
    • /
    • 2012
  • ZnO and $SnO_2$, well-known wide direct band-gap semiconductors, have been considered as the most promising functional materials due to their highly sensitive gas sensing and excellent optical properties. ZnO/$SnO_2$ epitaxial hetrostructure exhibited unique luminescence properties in contrast with individual tetra-pod ZnO and $SnO_2$ nanostructures. Polycrystalline $SnO_2$-based samples $Zn_xSn_{1-x}O_2$(x=0, 0.01, 0.03, 0.05) were prepared by solid state reaction and eco-friendly hydrothermal techniques. Scanning electron microscopy equipped with electron dispersive x-ray spectra confirms the formation of near stoichiometric $Zn_xSn_{1-x}O_2$ nanorods of diameter ~10 nm. X-ray diffraction analysis revealed the rutile structure, except for x=0.07, which may have a small part of $Zn_2SnO_4$ as a secondary phase.

  • PDF

Interfacial Layers for High Efficiency Polymer Solar Cells

  • Kim, Youn-Su;Choi, Ha-Na;Son, Seon-Kyoung;Kim, Ta-Hee;Kim, Bong-Soo;Kim, Kyung-Kon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.74-74
    • /
    • 2011
  • Polymer solar cells utilize bulk heterojunction (BHJ) type photo-active layer in which the electron donating polymer and electron accepting C60 derivatives are mixed together. In the BHJ system the electron donating polymer and electron accepting C60 derivatives are blended. The blended system causes charge recombination at the interface between the BHJ active layer and electrode. To reduce the charge recombination at the interface, it is needed to use an interlayer that can selectively transfer electrons or holes. We have developed solution processable wide band gap inorganic interfacial layers for polymer solar cells. The effect of interlayers on the performance of polymer solar cell was investigated for various types of conjugated polymers. We have found that inorganic interfacial layers enhanced the solar cell efficiency through the reduction of charge recombination at the interface between active layer and electrode. Furthermore, the stability of the polymer solar cell using the interlayer was significantly improved. The efficiency of 6.5% was obtained from the PTB7:PCBM70 based solar cells utilizing $TiO_2$nanoparticles as an interlayers.

  • PDF

BER analysis of CSS MODEM algorithm for WPAN based on binary ZCD (이진 ZCD 코드 기반의 WPAN용 CSS 변복조 알고리즘의 BER성능분석에 관한 연구)

  • Yeo, Wun-Seo;Yoon, Seung-Keum;Lee, Seon-Hee;Choi, Sung-Jin;Cho, Ju-Phil;Kim, Seong-Kweon;Cha, Jae-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.207-211
    • /
    • 2006
  • IEEE 802.15.4a에서는 첩(Chirp)신호을 이용한 UWB(Ultra Wide Band) 시스템으로서 DBO(Differential Bi-Orthogonal)-CSS(Chirp Spread Spectrum) 기술을 선택적 표준안으로 정하였다. 기존 DBO-CSS에서는 다중 피코넷 간섭(MPI; Multiple Piconets Interference)을 피하기 위하여 각 피코넷 별로 Different Time-Gap을 할당하고 있다 하지만 완벽한 직교성이 존재하지 않는다는 특성을 가지고 있어서 간섭의 영향에 민감할 수 밖에 없고, 무선통신시스템의 성능 저하를 야기시킨다. 본 논문에서는 각 피코넷 별로 보다 완전한 직교성을 확보하기 위하여, 확산코드기법을 적용한 CSS 변복조 알고리즘을 제안하고, 또한 일정한 시간 구간동안 연속적인 직교특성을 가지는 이진 ZCD(Zero Correlation Duration) 코드를 사용하여 BER(Bit Error Rate) 성능 분석을 통해 SOP(Simultaneously Operating Piconets) 환경에서 다중 피코넷 간섭 등의 영향을 효과적으로 제거함을 확인하였다.

  • PDF

Structural Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature (열처리온도에 따른 다이아몬드상 카본박막의 구조적 특성변화)

  • Choi Won-Seok;Park Mun-Gi;Hong Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.701-706
    • /
    • 2006
  • In addition to its similarity to genuine diamond film, diamond-like carbon (DLC) film has many advantages, including its wide band gap and variable refractive index. In this study, DLC films were prepared by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the structural variation of the DLC films. The films were annealed at temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film and interface between film and substrate were observed by surface profiler, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), respectively. Raman and X-ray photoelectron spectroscopy (XPS) analysis showed that DLC films were graphitized ($I_D/I_G$, G-peak position and $sp^2/sp^3$ increased) ratio at higher annealing temperature. The variation of surface as a function of annealing treatment was verified by a AFM and contact angle method.

The High Efficiency of Amorphous-Si Solar Cells Prepared by Photo-CVD System (광(光) CVD 법(法)에 의한 a-Si 태양전지(太陽電池)의 고효율화에 관한 연구(硏究))

  • Kim, Tae-Seoung
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.46-53
    • /
    • 1985
  • Hydrogenated amorphous silicon solar cells which are fabricated by photo-chemical vapor deposition (photo-CVD) system has been investigated. In the photo-CVD system which consists of three separate reaction chambers, low-pressure mercury lamp has been used as a light source. The main reactant ($Si_2H_6/He$) gases which are premixed with a small amount of mercury vapor in a mercury-vaporizer kept at $50^{\circ}C$ have been used. Using $C_2H_2$ and $SiH_2(CH_3)_2$ as the carbon source, p-type wide band gap a-SiC:H films have been obtained. The result has been found that the undoped layers of the pin/substrate solar cells are influenced by the residual impurities, such as phosphorus and boron during the deposition process. By minimizing the effect of the impurities in the i-layer and optimizing conditions at the p-layer and p/i interface, the energy conversion efficiency of 9.61 % under AM-1 ($100mW/Cm^2$) has been achieved for pin/substrate solar cells illuminated through their p-layers, using the three separate reaction chamber apparatus. It is expected that a-SiC:H solar cells with the energy conversion efficiency over 10% have been fabricated by Photo-CVD method.

  • PDF

Synthesis and Characterization of CuInS2 Semiconductor Nanoparticles and Evolution of Optical Properties via Surface Modification (CuInS2 나노 반도체 합성 및 표면 개질을 통한 광학적 효율 분석 연구)

  • Yang, Hee-Seung;Kim, Yoo-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.177-181
    • /
    • 2012
  • Copper composite materials have attracted wide attention for energy applications. Especially $CuInS_2$ has a desirable direct band gap of 1.5 eV, which is well matched with the solar spectrum. $CuInS_2$ nanoparticles could make it possible to develop color-tunable $CuInS_2$ nanoparticle emitter in the near-infrared region (NIR) for energy application and bio imaging sensors. In this paper, $CuInS_2$ nanoparticles were successfully synthesized by thermo-decomposition methods. Surface modification of $CuInS_2$ nanoparticles were carried out with various semiconductor materials (CdS, ZnS) for enhanced optical properties. Surface modification and silica coating of hydrophobic nanoparticles could be dispersed in polar solvent for potential applications. Their optical properties were characterized by UV-vis spectroscopy and photoluminescence spectroscopy (PL). The structures of silica coated $CuInS_2$ were observed by transmission electron microscopy (TEM).