• Title/Summary/Keyword: WiFi positioning

Search Result 131, Processing Time 0.024 seconds

The Trend of WPS(WiFi Positioning System & Service) (WPS(WiFi Positioning System & Service) 동향)

  • Jeong, Seung-Hyuk;Shin, Hyun-Shik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.433-438
    • /
    • 2011
  • The purpose of this paper is to define WiFi LDT(Location Determination Technology) and Service available for mobile wireless network. This paper introduces positioning technology such as Basic Technology Element and QoS(Quality of Service) etc. of WPS(WiFi Positioning System) for mobile wireless network. The LDT and wireless positioning technology in order to determine the position of terminal when mobile based positioning service is provided, and by providing service with postioning technology, it will not only provide convenience to the users or subscribers but also contribute to the activation of LBS(Location Based Services) industries.

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

Clustering Method for Classifying Signal Regions Based on Wi-Fi Fingerprint (Wi-Fi 핑거프린트 기반 신호 영역 구분을 위한 클러스터링 방법)

  • Yoon, Chang-Pyo;Yun, Dai Yeol;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.456-457
    • /
    • 2021
  • Recently, in order to more accurately provide indoor location-based services, technologies using Wi-Fi fingerprints and deep learning are being studied. Among the deep learning models, an RNN model that can store information from the past can store continuous movements in indoor positioning, thereby reducing positioning errors. When using an RNN model for indoor positioning, the collected training data must be continuous sequential data. However, the Wi-Fi fingerprint data collected to determine specific location information cannot be used as training data for an RNN model because only RSSI for a specific location is recorded. This paper proposes a region clustering technique for sequential input data generation of RNN models based on Wi-Fi fingerprint data.

  • PDF

Indoor Positioning Technology Integrating Pedestrian Dead Reckoning and WiFi Fingerprinting Based on EKF with Adaptive Error Covariance

  • Eui Yeon Cho;Jae Uk Kwon;Myeong Seok Chae;Seong Yun Cho;JaeJun Yoo;SeongHun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.271-280
    • /
    • 2023
  • Pedestrian Dead Reckoning (PDR) methods using initial sensors are being studied to provide the location information of smart device users in indoor environments where satellite signals are not available. PDR can continuously estimate the location of a pedestrian regardless of the walking environment, but has the disadvantage of accumulating errors over time. Unlike this, WiFi signal-based wireless positioning technology does not accumulate errors over time, but can provide positioning information only where infrastructure is installed. It also shows different positioning performance depending on the environment. In this paper, an integrated positioning technology integrating two positioning techniques with different error characteristics is proposed. A technique for correcting the error of PDR was designed by using the location information obtained through WiFi Measurement-based fingerprinting as the measurement of Extended Kalman Filte (EKF). Here, a technique is used to variably calculate the error covariance of the filter measurements using the WiFi Fingerprinting DB and apply it to the filter. The performance of the proposed positioning technology is verified through an experiment. The error characteristics of the PDR and WiFi Fingerprinting techniques are analyzed through the experimental results. In addition, it is confirmed that the PDR error is effectively compensated by adaptively utilizing the WiFi signal to the environment through the EKF to which the adaptive error covariance proposed in this paper is applied.

A Study on the Weight of W-KNN for WiFi Fingerprint Positioning (WiFi 핑거프린트 위치추정 방식에서 W-KNN의 가중치에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.105-111
    • /
    • 2017
  • In this paper, the analysis results are shown about several weights of Weighted K-Nearest Neighbor method, Recently, it is employed for the indoor positioning technologies using WiFi fingerprint which has been actively studied. In spite of the simplest feature, the W-KNN method shows comparable performance to another methods using WiFi fingerprint technology. So W-KNN method has employed in the existing indoor positioning system. It shows positioning error performance according to data preprocessing and weight factor, and the analysis on the weight is very important. In this paper, based on the real measured WiFi fingerprint data, the estimation error is analyzed and the performances are compared, for the case of data processing methods, of the weight of average, variance, and distance, and of the averaging several position of number K. These results could be practically useful to construct the real indoor positioning system.

Unlabeled Wi-Fi RSSI Indoor Positioning by Using IMU

  • Chanyeong, Ju;Jaehyun, Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.37-42
    • /
    • 2023
  • Wi-Fi Received Signal Strength Indicator (RSSI) is considered one of the most important sensor data types for indoor localization. However, collecting a RSSI fingerprint, which consists of pairs of a RSSI measurement set and a corresponding location, is costly and time-consuming. In this paper, we propose a Wi-Fi RSSI learning technique without true location data to overcome the limitations of static database construction. Instead of the true reference positions, inertial measurement unit (IMU) data are used to generate pseudo locations, which enable a trainer to move during data collection. This improves the efficiency of data collection dramatically. From an experiment it is seen that the proposed algorithm successfully learns the unsupervised Wi-Fi RSSI positioning model, resulting in 2 m accuracy when the cumulative distribution function (CDF) is 0.8.

Wi-Fi Fingerprint-based Indoor Movement Route Data Generation Method (Wi-Fi 핑거프린트 기반 실내 이동 경로 데이터 생성 방법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.458-459
    • /
    • 2021
  • Recently, researches using deep learning technology based on Wi-Fi fingerprints have been conducted for accurate services in indoor location-based services. Among the deep learning models, an RNN model that can store information from the past can store continuous movements in indoor positioning, thereby reducing positioning errors. At this time, continuous sequential data is required as training data. However, since Wi-Fi fingerprint data is generally managed only with signals for a specific location, it is inappropriate to use it as training data for an RNN model. This paper proposes a path generation method through prediction of a moving path based on Wi-Fi fingerprint data extended to region data through clustering to generate sequential input data of the RNN model.

  • PDF

Performance of Indoor Positioning using Visible Light Communication System (가시광 통신을 이용한 실내 사용자 단말 탐지 시스템)

  • Park, Young-Sik;Hwang, Yu-Min;Song, Yu-Chan;Kim, Jin-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 2014
  • Wi-Fi fingerprinting system is a very popular positioning method used in indoor spaces. The system depends on Wi-Fi Received Signal Strength (RSS) from Access Points (APs). However, the Wi-Fi RSS is changeable by multipath fading effect and interference due to walls, obstacles and people. Therefore, the Wi-Fi fingerprinting system produces low position accuracy. Also, Wi-Fi signals pass through walls. For this reason, the existing system cannot distinguish users' floor. To solve these problems, this paper proposes a LED fingerprinting system for accurate indoor positioning. The proposed system uses a received optical power from LEDs and LED-Identification (LED-ID) instead of the Wi-Fi RSS. In training phase, we record LED fingerprints in database at each place. In serving phase, we adopt a K-Nearest Neighbor (K-NN) algorithm for comparing existing data and new received data of users. We show that our technique performs in terms of CDF by computer simulation results. From simulation results, the proposed system shows that a positioning accuracy is improved by 8.6 % on average.

A Study on Learning Structure for Indoor Positioning based on Wi-Fi Fingerprint (Wi-Fi 전파지문 기반 실내 측위를 위한 학습 구조에 관한 연구)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.641-642
    • /
    • 2018
  • Currently, the performance of positioning technology based on radio wave fingerprint is greatly influenced by the selection of data comparison algorithm. In this case, the accuracy of the indoor positioning can be greatly improved by the data expansion technique necessary for the learning structure. In this paper, we discuss the importance of learning structure that can be applied to actual positioning through classification and extension of learning data to construct learning structure based on Wi-Fi radio fingerprint.

  • PDF