Clustering Method for Classifying Signal Regions Based on Wi-Fi Fingerprint

Wi-Fi 핑거프린트 기반 신호 영역 구분을 위한 클러스터링 방법

  • Published : 2021.05.03

Abstract

Recently, in order to more accurately provide indoor location-based services, technologies using Wi-Fi fingerprints and deep learning are being studied. Among the deep learning models, an RNN model that can store information from the past can store continuous movements in indoor positioning, thereby reducing positioning errors. When using an RNN model for indoor positioning, the collected training data must be continuous sequential data. However, the Wi-Fi fingerprint data collected to determine specific location information cannot be used as training data for an RNN model because only RSSI for a specific location is recorded. This paper proposes a region clustering technique for sequential input data generation of RNN models based on Wi-Fi fingerprint data.

최근, 실내 위치 기반 서비스를 보다 정확하게 제공하기 위해서 Wi-Fi 핑거프린트와 딥러닝을 이용한 기술이 연구되고 있다. 딥러닝 모델 중에서 과거의 정보를 기억할 수 있는 RNN 모델은 실내측위에서 연속된 움직임을 기억할 수 있어 측위 오차를 줄일 수 있다. 실내 측위에서 RNN 모델을 사용하는 경우 수집된 학습 데이터가 연속적인 순차 데이터이어야 한다. 그러나 특정 위치 정보를 판단하기 위해 수집된 Wi-Fi 핑거프린트 데이터는 특정 위치에 대한 RSSI만 기록되었기 때문에 RNN 모델의 학습 데이터로 사용이 불가능하다. 본 논문은 Wi-Fi 핑거프린트 데이터를 기반으로 RNN 모델의 순차적인 입력 데이터의 생성을 위한 영역 클러스터링 방법에 대해 제안한다.

Keywords