• Title/Summary/Keyword: WiFi based positioning system

Search Result 69, Processing Time 0.02 seconds

The Trend of WPS(WiFi Positioning System & Service) (WPS(WiFi Positioning System & Service) 동향)

  • Jeong, Seung-Hyuk;Shin, Hyun-Shik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.433-438
    • /
    • 2011
  • The purpose of this paper is to define WiFi LDT(Location Determination Technology) and Service available for mobile wireless network. This paper introduces positioning technology such as Basic Technology Element and QoS(Quality of Service) etc. of WPS(WiFi Positioning System) for mobile wireless network. The LDT and wireless positioning technology in order to determine the position of terminal when mobile based positioning service is provided, and by providing service with postioning technology, it will not only provide convenience to the users or subscribers but also contribute to the activation of LBS(Location Based Services) industries.

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

The Design and Implementation of Location Information System using Wireless Fidelity in Indoors (실내에서 Wi-Fi를 이용한 위치 정보 시스템의 설계 및 구현)

  • Kwon, O-Byung;Kim, Kyeong-Su
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.243-249
    • /
    • 2013
  • In this paper, GPS(Global Positioning System) that can be used outdoors and GPS(Global Positioning System) is not available for indoor Wi-Fi(Wireless Fidelity) using the Android-based location information system has been designed and implemented. Pedestrians in a room in order to estimate the location of the pedestrian's position, regardless of need to obtain the absolute position and relative position, depending on the movement of pedestrians in a row it is necessary to estimate. In order to estimate the initial position of the pedestrian Wi-Fi Fingerprinting was used. Most existing Wi-Fi Fingerprinting position error small WKNN(Weighted K Nearest Neighbor) algorithm shortcoming EWKNN (Enhanced Weighted K Nearest Neighbor) using the algorithm raised the accuracy of the position. And in order to estimate the relative position of the pedestrian, the smart phone is mounted on the IMUInertial Measurement Unit) because the use did not require additional equipment.

A Study on the Weight of W-KNN for WiFi Fingerprint Positioning (WiFi 핑거프린트 위치추정 방식에서 W-KNN의 가중치에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.105-111
    • /
    • 2017
  • In this paper, the analysis results are shown about several weights of Weighted K-Nearest Neighbor method, Recently, it is employed for the indoor positioning technologies using WiFi fingerprint which has been actively studied. In spite of the simplest feature, the W-KNN method shows comparable performance to another methods using WiFi fingerprint technology. So W-KNN method has employed in the existing indoor positioning system. It shows positioning error performance according to data preprocessing and weight factor, and the analysis on the weight is very important. In this paper, based on the real measured WiFi fingerprint data, the estimation error is analyzed and the performances are compared, for the case of data processing methods, of the weight of average, variance, and distance, and of the averaging several position of number K. These results could be practically useful to construct the real indoor positioning system.

Indoor Positioning Technique applying new RSSI Correction method optimized by Genetic Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.186-195
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of indoor positioning techniques using Wi-Fi access points as beacon nodes. The proposed algorithm is based on the Weighted Centroid algorithm, a popular method widely used for indoor positioning, however, it improves some disadvantages of the Weighted Centroid method and also for other kinds of indoor positioning methods, by using the received signal strength correction method and genetic algorithm to prevent the signal strength fluctuation phenomenon, which is caused by the complex propagation environment. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment, and collect a list of Wi-Fi signal strength data from several access points around the standing user location. By utilizing this kind of algorithm, we can obtain a high accuracy positioning system, which can be used in any building environment with an available Wi-Fi access point setup as a beacon node.

Accurate Long-Term Evolution/Wi-Fi hybrid positioning technology for emergency rescue

  • Myungin Ji;Ju-il Jeon;Kyeong-Soo Han;Youngsu Cho
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.939-951
    • /
    • 2023
  • It is critical to estimate the location using only Long-Term Evolution (LTE) and Wi-Fi information gathered by the user's smartphone and deployable for emergency rescue, regardless of whether the Global Positioning System is received. In this research, we used a vehicle to gather LTE and Wi-Fi wireless signals over a large area for an extended period of time. After that, we used the learning technique to create a positioning database that included both collection and noncollection points. We presented a two-step positioning algorithm that utilizes coarse localization to discover a rough location in a wide area rapidly and fine localization to estimate a particular location based on the coarse position. We confirmed our technology utilizing different sorts of devices in four regional types that are generally encountered: dense urban, urban, suburban, and rural. Results presented that our algorithm can satisfactorily achieve the target accuracy necessary in emergency rescue circumstances.

Investigation and Testing of Location Systems Using WiFi in Indoor Environments

  • Retscher, Guenther;Mok, Esmond
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.83-88
    • /
    • 2006
  • Many applications in the area of location-based services and personal navigation require nowadays the location determination of a user not only in outdoor environment but also indoor. To locate a person or object in a building, systems that use either infrared, ultrasonic or radio signals, and visible light for optical tracking have been developed. The use of WiFi for location determination has the advantage that no transmitters or receivers have to be installed in the building like in the case of infrared and ultrasonic based location systems. WiFi positioning technology adopts IEEE802.11x standard, by observing the radio signals from access points installed inside a building. These access points can be found nowadays in our daily environment, e.g. in many office buildings, public spaces and in urban areas. The principle of operation of location determination using WiFi signals is based on the measurement of the signal strengths to the surrounding available access points at a mobile terminal (e.g. PDA, notebook PC). An estimate of the location of the terminal is then obtained on the basis of these measurements and a signal propagation model inside the building. The signal propagation model can be obtained using simulations or with prior calibration measurements at known locations in an offline phase. The most common location determination approach is based on signal propagation patterns, namely WiFi fingerprinting. In this paper the underlying technology is briefly reviewed followed by an investigation of two WiFi positioning systems. Testing of the system is performed in two localization test beds, one at the Vienna University of Technology and the second at the Hong Kong Polytechnic University. First test showed that the trajectory of a moving user could be obtained with a standard deviation of about ${\pm}$ 3 m.

  • PDF

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

Precise Indoor Positioning Algorithm for Energy Efficiency Based on BLE Fingerprinting (에너지 효율을 고려한 BLE 핑거프린팅 기반의 정밀 실내 측위 알고리즘)

  • Lee, Dohee;Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1197-1209
    • /
    • 2016
  • As Indoor Positioning System demands due to increased penetration and utilization of smart device, Indoor Positioning System using Wi-Fi or BLE(Bluetooth Low Energy) beacon takes center stage. In this paper, a terminal location of the user is calculated through Microscopic Trilateration using RSSI based on BLE. In the next step, a fingerprinting map appling approximate value of Microscopic Trilateration increases an efficiency of computation amount and energy for Indoor Positioning System. I suggest Indoor Positioning Algorithm based on BLE fingerprinting considering efficiency of energy by conducting precise Trilateration that assure user's terminal position by using AP(Access Point) surrounding targeted fingerprinting cells. And This paper shows experiment and result based on An Suggesting Algorithm in comparison with a fingerprinting based on BLE and Wi-Fi that be used for Indoor Positioning System.

A Study on the Technological and Environmental Factors Affecting the Accuracy of Beacon Based Indoor Positioning System (기술적, 환경적 요소에 따른 비콘 기반 실내 측위 정확도 변화연구)

  • Byeon, Tae-Woo;Jang, Seong-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2016
  • Indoor location system has been used Wi-Fi to get a location. After the development of BLE(Bluetooth Low Energy), the interest in the method of a indoor positioning had been move on. It has more advantages than using Wi-Fi. Easy installation, low power consumption, low signal interference and changeable setting(Advertising interval, tx power, etc.). These things can improve efficiency or accuracy in a indoor positioning system. For this reason, recent indoor positioning system uses BLE rather than Wi-Fi. Accordingly, error factors of BLE beacon based indoor positioning should be studying for high accuracy of indoor positioning. In this research, set up few experiment scenarios and keep a close watch on how technological, environmental factor is affecting positioning accuracy. When a application uses largest signal strength to get the indoor location, the mean error of experimental results was decreased compare to using received signal strength in real-time. The result was same when the application applied average and standard deviation to get the indoor location. Changing advertising interval had an effect on the mean error of indoor positioning. Short advertising interval makes the lower mean error than large advertising interval.