• 제목/요약/키워드: Whole-cell current

검색결과 257건 처리시간 0.025초

토끼 단일 심방근 세포에서 Na-Ca 교환전류의 특성에 관한 연구 (The Properties of Na-Ca Exchange Current in Single Atrial Cells of ,The Rabbit)

  • 염욱;호원경;서경필
    • Journal of Chest Surgery
    • /
    • 제22권4호
    • /
    • pp.548-561
    • /
    • 1989
  • In single atrial cells isolated from the rabbit the properties of inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The current was recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of * 70 mV. Followings are the results obtained: 1. When stimulated every 30 seconds, the inward currents were activated and reached peak values 6-12 ms after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2. The current decayed spontaneously from the peak activation and the time course of the relaxation showed two different phases fast and slow phase. The time constants were 10-18 ms and 60-140 ms, respectively. 3. The recovery of inward current was tested by paired pulse of various intervals. The peak current recovered exponentially with time constant of 140 ms and 1 p M isoprenaline accelerated the recovery process. 4. Relaxation time course was also affected by pulse interval and time constant of the fast phase was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5. The peak activation was increased in magnitude by long prepulse stimulation, 5 p M Bay K, 1 p M isoprenaline or internal and external application of c-AMP. 6. The relaxation time constant of the fast phase was prolonged by 5 p M Bay K or c-AMP, and shortened by isoprenaline. However the time course of the slow relaxation phase was not so much changed. From the above results, it could be concluded that increase of the calcium current by Bay K or c-AMP results in the potentiation and prolongation of intracellular calcium transient, and the facilitation of Ca uptake by SR might be a mechanism of shortening the time constant of current relaxation by short interval stimulation or isoprenaline.

  • PDF

Drosophila melanogaster: a Model for the Study of DNA Damage Checkpoint Response

  • Song, Young-Han
    • Molecules and Cells
    • /
    • 제19권2호
    • /
    • pp.167-179
    • /
    • 2005
  • The cells of metazoans respond to DNA damage by either arresting their cell cycle in order to repair the DNA, or by undergoing apoptosis. This response is highly conserved across species, and many of the genes involved in this DNA damage response have been shown to be inactivated in human cancers. This suggests the importance of DNA damage response with regard to the prevention of cancer. The DNA damage checkpoint responses vary greatly depending on the developmental context, cell type, gene expression profile, and the degree and nature of the DNA lesions. More valuable information can be obtained from studies utilizing whole organisms in which the molecular basis of development has been well established, such as Drosophila. Since the discovery of the Drosophila p53 orthologue, various aspects of DNA damage responses have been studied in Drosophila. In this review, I will summarize the current knowledge on the DNA damage checkpoint response in Drosophila. With the ease of genetic, cellular, and cytological approaches, Drosophila will become an increasingly valuable model organism for the study of mechanisms inherent to cancer formation associated with defects in the DNA damage pathway.

Lithospermic acid modulate the Action potential duration by increasing Ica current in the rat ventricular myocyte

  • An, Seong-Hun;Kang, Dae-Gill;Lee, Ho-Sup;Lee, Suk-Ho;Earm, Yung-E
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.55-55
    • /
    • 2001
  • We observed the APD of rat ventricle myocyte and the effects of Lithospermic acid that was separated at Salvia miltiorrhiza having used in Oriental medicine by using classical whole cell patch clamp technique. We classified APD into APD30mV, APD0mV, APD-50mV, APD-60mV by cell membrane potential and the mean of cell resting membrane potential was -69.44${\pm}$1.72 mV.(omitted)

  • PDF

4분법을 이용한 전압 클램프 VCO의 설계에 관한 연구 (A Study on the Design of Voltage Clamp VCO Using Quadrature Phase)

  • 서일원;최우범;정석민;성만열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3184-3186
    • /
    • 1999
  • In this paper, a new structure of fully differential delay cell VCO using quadrature phase for low phase noise and high speed operation is suggested. It is realized by inserting voltage clamp circuit into input pairs of delay cells that include three-control current source having high output impedance. In this reason. this newly designed delay cell for VCO has the low power supply sensitivity so that the phase noise can be reduced. The whole characteristics of VCO were simulated by using HSPICE and SABER. Simulation results show that the phase noise of new VCO is quite small compared with conventional fully differential delay cell VCO and ring oscillator type VCO. It is also very beneficial to low power supply design because of wide tuning range.

  • PDF

PCV수치를 변경시킨 닭적혈구 침강속도 (Red Cell Sedimentation Rates of Reshuffled Packed Cell Volume in Chicken)

  • 유창준;이수두
    • Current Research on Agriculture and Life Sciences
    • /
    • 제8권
    • /
    • pp.115-118
    • /
    • 1990
  • 조류인 닭의 혈액을 PCV수치를 20%, 40% 및 60%로 임의로 변경시켜 자가혈장내에서 Westergren 방법에 의해 실온($27{\pm}1^{\circ}C$)과 저온($8{\pm}1^{\circ}C$)에서 적혈구 침강속도를 측정한 결과를 요약하면 다음과 같은 결과를 얻었다. 1. 닭에서 PCV수치가 작을수록 적혈구 침강속도는 증가되었다. 2. PCV수치를 변경시킨 닭의 혈액에서 반추수인 산양보다 적혈구 침강속도가 크게 나타났다. 3. PCV수치를 변경시킨 닭의 모든 혈액에서 시간경과에 따른 적혈구 침강속도는 직선상으로 나타났다. 4. PCV수치를 변경시킨 닭의 혈액에서 적혈구 침강속도는 저온에서 보다 실온에서 크게 나타났다.

  • PDF

Background Non-Selective Cation Channels in Rat Atrial Myocytes

  • Youm, Jae-Boum;Zhang, Yin-Hua;Ho, Won-Kyung;Earm, Yung-E
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1998년도 학술발표회
    • /
    • pp.38-38
    • /
    • 1998
  • Resting membrane potential of atrial myocytes is less negative than K+ equilibrium potential, suggesting the presence of ion channels carrying inward currents. We investigated the background Na$\^$+/ current in rat atrial myocytes using both conventional whole cell voltage clamp technique and single channel recording.(omitted)

  • PDF

Decursin from Angelica gigas Nakai Blocks hKv1.5 Channel

  • Kwak, Yong-Geun;Choi, Bok-Hee;Kim, Dae-Keun;Eun, Jae-Soon
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.33-37
    • /
    • 2011
  • Decursin was purified from Angelica gigas Nakai, and its effects on the human Kv1.5 (hKv1.5) currents were recorded in mouse fibroblasts ($Ltk^-$ cells) by whole-cell patch-clamp technique. Decursin inhibited hKv1.5 current in a concentration-dependent manner, with an $IC_{50}$ value of $2.7\;{\mu}M$ at +60 mV. Decursin accelerated the inactivation kinetics of the hKv1.5 channel, and slowed the deactivation kinetics of the hKv1.5 current, resulting in a tail crossover phenomenon. Also, decursin inhibited the hKv1.5 current in a use-dependent manner. These results strongly suggest that decursin is a kind of open-channel blocker of the hKv1.5 channel.

Identification and Distribution of predominant tactic Acid Bacteria in Kimchi, a Korean Traditional Fermented Food

  • Kim, Tae-Woon;Lee, Ji-Yeon;Jung, Sang-Hoon;Kim, Young-Mok;Jo, Jae-Sun;Chung, Dae-Kyun;Lee, Hyong-Joo;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.635-642
    • /
    • 2002
  • To effectively investigate the identification and distribution of the lactic acid bacteria in Kimchi, polyphasic methods, including a PCR, SDS-PAGE of the whole-cell proteins, and 16S rRNA gene sequence analysis, were used. In various types of Kimchi fermented at 20$\^{C}$, the isolate KHU-31 was found to be the predominant lactic acid bacteria. This isolate was identified as Lactobacillus sake KHU-31, based on SDS-PAGE of the whole-cell proteins and a 165 rRNA gene sequence analysis, which provided accurate and specific results. Accordingly, the approach used in the current study demonstrated that Lactobacillus sake KHU-31, together with Leuconostoc mesenteroides, were the most predominant lactic acid bacteria in all types of Kimchi in the middle stage of fermentation at 20$\^{C}$.

Effects of Samchulkunbi-tang in Cultured Interstitial Cells of Cajal of Murine Small Intestine

  • Kim, Jung Nam;Kwon, Young Kyu;Kim, Byung Joo
    • 동의생리병리학회지
    • /
    • 제27권1호
    • /
    • pp.112-117
    • /
    • 2013
  • We studied the modulation of pacemaker activities by Samchulkunbi-tang (SCKB) in cultured interstitial cells of Cajal (ICC) from murine small intestine with the whole-cell patch-clamp technique. Externally applied SCKB produced membrane depolarization in the current-clamp mode. The pretreatment with $Ca^{2+}$-free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker potentials and suppressed the SCKB-induced action. The application of flufenamic acid (a nonselective cation channel blocker) abolished the generation of pacemaker potentials by SCKB. However, the application of niflumic acid (a chloride channel blocker) did not inhibit the generation of pacemaker potentials by SCKB. In addition, the membrane depolarizations were inhibited by not only GDP-${\beta}$-S, which permanently binds G-binding proteins, but also U-73122, an active phospholipase C inhibitor. These results suggest that SCKB modulates the pacemaker activities by nonselective cation channels and external $Ca^{2+}$ influx and internal $Ca^{2+}$ release via G-protein and phospholipase C-dependent mechanism. Therefore, the ICC are targets for SCKB and their interaction can affect intestinal motility.

Effects of Hesperidin Are Not Associated with Changes in Basal Synaptic Transmission, Theta-burst LTP, and Membrane Excitability in CA1 Neuron

  • Baek, Jin-Hee;Kim, Jae-Ick;Kaang, Bong-Kiun
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.357-362
    • /
    • 2009
  • Hesperidin, the most abundant polyphenolic compound found in citrus fruits, has been known to possess neuroprotective, sedative, and anticonvulsive effects on the nervous system. In a recent electrophysiological study, it was reported that hesperidin induced biphasic change in population spike amplitude in hippocampal CA1 neurons in response to both single spike stimuli and theta-burst stimulation depending on its concentration. However, the precise mechanism by which hesperidin acts on neuronal functions has not been fully elucidated. Here, using whole-cell patch-clamp recording, we revealed that hesperidin did not affect excitatory synaptic activities such as basal synaptic transmission and theta-burst LTP. Moreover, in a current injection experiment, spike number, resting membrane potential and action potential threshold also remained unchanged. Taken together, these results indicate that the effects of hesperidin on the neuronal functions such as spiking activity might not be attributable to either modification of excitatory synaptic transmissions or changes in membrane excitability in hippocampal CA1 neuron.