• Title/Summary/Keyword: Whole-Body Exposure

Search Result 201, Processing Time 0.023 seconds

A Study on the Evaluation of the Boarding Environment for the Ship Vibration (on the Basis of ISO-6954 : 2000(E)) (선박의 선내 진동에 의한 승선 환경 평가에 관한 연구 (ISO-6954 : 2000(E)의 평가방법에 기초))

  • Yu, Young-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.107-112
    • /
    • 2007
  • The vibration generated on shipboard is very important because it greatly affects on the comfortable mind of passenger and working conditions of crews. Shipboard vibration is closely concerned with the development of propulsion method and the type of main engine to decide speed of ship. To make the propulsion power, the main engine of ship have continuous explosion process in engine room, so the shipboard vibration is generated. The shipboard vibration causes the physiological and psychological damages to human body. In the case of the human body exposed to the shipboard vibration, the evaluation of human exposure to whole-body vibration is prescribed in ISO 6954 : 2000(E). In this paper, to evaluate the shipboard working environment, two kinds of vibration levels onboard ship were measured and compared with one another between engine rooms, engine control rooms and wheel house by the regulation of ISO 6954 : 2000(E).

  • PDF

An Evaluation of Working Environment of the Ship Vibration by ISO Regulation (ISO규정에 의한 선박의 선내진동과 승선근무 환경평가)

  • Yu, Young-Hun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.139-144
    • /
    • 2007
  • The vibration generated on shipboard is very important because it is greatly affect on the comfortable mind of passenger and working conditions et crews. Shipboard vibration is closely concerned with the development of propulsion method tint is main engine to decide speed of ship. To make the propulsion power, the main engine of ship engine room have continuous explosion process, so the shipboard vibration is generated The physiological damage and psychological damage of human body have caused by the vibration et shipboard In the case of the human body is exposed to the shipboard vibration, the evaluation of human exposure to whole-body vibration is prescribed in ISO 6954: 2000(E). In this paper, to evaluate the shipboard working environment, the vibration levels of two kinds of ship onboard were measured and compared with engine rooms, engine control rooms and bridges by the regulation of ISO 6954: 2000(E)

  • PDF

Adaptive Blowing Control Algorithm for Autonomous Control of Underwater Flight Vehicle (수중 비행체의 자율제어를 위한 적응 부상 제어 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.482-487
    • /
    • 2008
  • In case of flooding, the underwater flight vehicle (UFV) executes the blowing by blowing ballast tanks off using high pressure air (HPA), while it also uses control planes and a propulsion unit to reduce the overshoot depth caused by a flooding and blowing sequence. However, the conventional whole HPA blow-off method lets the body on the surface after blowing despite slight flooding. This results in the unnecessary mission failure or body exposure. Therefore, it is necessary to keep the body at the near surface by the blowing control while reducing the overshoot depth. To solve this problem, an adaptive blowing control algorithm, which is based on the decomposition method expanding the expert knowledge in depth control and the adaptive method using fuzzy basis function expansion (FBFE), is proposed. To verify the performance of the proposed algorithm, the blowing control of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the UFV blowing control system online.

A Field Test Assessment on the Extremity Doses of Highly-Exposed Radiation Workers During Maintenance Periods at Nuclear Power Plants in Korea (원전 계획예방정비기간 고피폭 접촉작업에서 방사선작업종사자의 말단선량 평가 현장시험)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • Maintenance on the water chamber of steam generator, the change of pressurizer heater, the removal of pressure tube feeder, and so on during outage in nuclear power plants (NPPs) has a likelihood of high radiation exposure to whole body of workers even short time period due to the high radiation exposure rates. In particular, it is expected that hands would receive the highest radiation exposure because of its contact with radiation materials. In this study, field tests on extremity dose assessment of radiation workers for contact works with high radiation exposure were conducted during the maintenance periods in Korean pressurized water reactors (PWRs) and pressurized heavy water reactors (PHWRs). In this field test, radiation workers were required to wear additional TLDs on the back and wrist, and an extremity dosimeter on fingers including a main TLD on the chest, while performing maintenance. As a result, it was found that the equivalent dose for fingers was distributed in the fixed range of deep dose and the equivalent dose for wrists.

Effects of External Whole-Body gamma-Irradiation on Blood Picture and Growth in Young Rabbits (Cobalt-60 gamma 선(線) 외부전신조사(外部全身照射)가 어린 토끼의 혈액상(血液像)과 성장률(成長率)에 미치는 영향(影響))

  • Sung, Jai Ki
    • Korean Journal of Veterinary Research
    • /
    • v.13 no.1
    • /
    • pp.85-102
    • /
    • 1973
  • In the event a population of animals is exposed to ionizing radiation, proper disposition of animals will minimize loss to the farmer and protect the public from unwholesome meat and dairy products. Clinical response is an important factor in considering salvage of animals for food following exposure to ionizing radiation whether the dose is lethal or not. It is the purpose of this report to present the discussions of blood picture and growth of y ung growing rabbits exposed to cobalt-60 gamma-irradiation. The experimental animals were Hyrnalayan rabbits of 65 days old. The body weight for all animals of the time of irradiation was approximately 450g. The 96 rabbits used in the experiment were allotted t groups of eight. Rabbits in one group served as controls and the others were exposed to single doses of 100, 200, 300, 400, 500, 600 and 700 Roentgens (R). The exposure does rate averaged 15 R per minute. Central blood was obtained by heart puncture. Erythrocyte and leukocyte enumerations and, determinations of hemoglobin in blood and hematocrit value were made in the usual manner. Erythrocyte counts, concentrations of hemoglobin in blood, and hematocrit readings dropped to the lowest value between 1 and 4 weeks postirradiation, returning towards the control values. But recovery was not complete at the time of the last determination on 6 weeks postirradiation. There was a progressive decrease with increasing radiation does in the above values. Mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration were not affected by the irradiation. After irradiation of each does the numbers of total leukocyte and the absolute numbers of various types of white cell began to decrease rapidly, and reached a minimum after 2 weeks, returning towards normal levels. But recovery was not complete at the time of the last determination on 6 weeks postirradiation. The reductions in total leukocyte and differential counts as the radiation does increases were apparent. Relative neutrophilia was observed in each irradiated group because of more expense of lymphocytes after irradiation. Growth rate of the rabbits was not affected by 100 R of whloe-body irradiation, while rabbits irradiated with 200, 300, 400 and 500 R showed marked depression of growth rate. As the radiation does increases, a depression of growth rate was apparent. The rabbits exposed to 600 and 700 R ceased from growing and recovery was not recognized during the experimental period.

  • PDF

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

Effective dose from direct and indirect digital panoramic units

  • Lee, Gun-Sun;Kim, Jin-Soo;Seo, Yo-Seob;Kim, Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.43 no.2
    • /
    • pp.77-84
    • /
    • 2013
  • Purpose: This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Materials and Methods: Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. Results: The effective doses of the 4 digital panoramic units ranged between $8.9{\mu}Sv$ and $37.8{\mu}Sv$. By using the head phantom, the effective doses from the direct digital panoramic units ($37.8{\mu}Sv$, $27.6{\mu}Sv$) were higher than those from the indirect units ($8.9{\mu}Sv$, $15.9{\mu}Sv$). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. Conclusion: To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom.

A Study on the Hazardousness Evaluation and the Inhalation Toxicity of Methylcyclohexane (메틸사이클로핵산 (methylcyclohexane)의 흡입독성과 유해성 평가)

  • Kim Hyeon-Yeong;Lee Sung-Bae;Kang Min-Gu;Song Si-Hwan
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.173-184
    • /
    • 2006
  • From the harmfulness expectation test conducted through a toxicity anticipation program, methylcyclohexane turned out to be harmful and simulative, but no carcinogenicity was anticipated. In a four-hour acute inhalation toxicity test, the result showed that lethal concentration ($LC_{50}$) was 3,750 ppm (15,054 mg/L), which was identified as a harmful substance on the basis of the harmful substance classification standard $2 of the Industrial safety and health law. methylcyclohexane fell under the category $4(2,500 substance from the GHS standard acute toxicity harmfulness classification. Also, from subchronic inhalation toxicity test that included 6 hours a day, five days a week, and for 13 weeks, we could observe weight, activity, long term weight, blood and blood biochemical influence from the exposure of test substance. No-observed effect level (NOEL) was determined below $100{\sim}400ppm$ inboth male and female. This material falls under the Category 2 ($50{\sim}250ppm/6hours/90days$) in the GHS (Globally Harmonized System) standard trace long-term whole body toxicity repeated exposure, and can be classified as a harmful substance in accordance with the Industrial Safety and Health Law harmful substance standard $NOEL{\leq}0.5mg/L/6hr/90day$ (rat).

Assessment of Occupational Dose to the Staff of Interventional Radiology Using Monte Carlo Simulations (몬테카를로 방법을 이용한 중재방사선시술자에 대한 선량평가)

  • Lim, Young-Khi
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.213-217
    • /
    • 2014
  • Medical operations and diagnosis using interventional radiology techniques have been increased. The management and monitoring of occupational radiation exposure to the staff of interventional radiology become important, specially because they stand in close proximity to the patient. The operational radiation protection quantity, Hp(10) which can be obtained from personal dosimeter do not always represent the effective dose to the staff. So, in this study, to estimate the critical organ doses to the staff of interventional radiology, Monte Carlo calculations with mathematical human phantom and dose measurements with personal dosimeters were carried out for the major interventional radiology procedures using C-arm. Results showed that the values of Hp(10) measured by personal dosimeters were higher than critical organ doses which were calculated. And the calculated dose to thyroids was much higher than those of other critical organ doses. For the proper radiation protection of the medical staff of interventional radiology, additional radiation protection for thyroids as well as for whole body shielding like wearing a lead apron should be considered.

Comparative study of the Korean Regulations, Standards and Guidelines for the Human Vibration with Other Countries

  • Kim, Day Sung;Lee, Dong-Kyung;Kim, Kyoo Sang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.321-331
    • /
    • 2013
  • Objective: The aim of this study is to review the literatures on the regulation, standard and guideline for the human vibration in Korea and other countries. Background: This review can be used to prevent various diseases caused by the human vibration as a basis for the development of the policy. Results: In Korea, the general employers' duties related to human vibration are set forth the Health Measures(Article 24) in the Occupational Safety and Health Act. And then an employer shall take measures to protect the health of the workers concerned by improving other working conditions relating to working hours for the vibration prevention measures referred to in Article 24 of the Act. The European Union adopted a Directive in 2002 on minimum requirements for the health and safety of workers exposed to vibration. New Regulations on Vibration at Work will be introduced in Great Britain on 2005 to implement the Directive. In the U.S., both ANSI and ACGIH adopted the ISO standard for measurement and suggested exposure action and limit values. In Japan, the Ministry of Labor decided that the vibration syndrome among operators of rock drills and riveters etc. could be included in an occupational disease(1947). In addition, ISO standard was based on proposals and draft documents of many countries such as U.K, Japan and European, etc. Conclusion: In Korea, Occupational Safety and Health Act prevent vibration to health, but do not include exposure limits. It is therefore important to consider the new duties regarding to vibration risks added to the general duties.