• 제목/요약/키워드: Whole genome

검색결과 576건 처리시간 0.022초

Analysis of Nuclear Mitochondrial DNA Segments of Nine Plant Species: Size, Distribution, and Insertion Loci

  • Ko, Young-Joon;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제14권3호
    • /
    • pp.90-95
    • /
    • 2016
  • Nuclear mitochondrial DNA segment (Numt) insertion describes a well-known phenomenon of mitochondrial DNA transfer into a eukaryotic nuclear genome. However, it has not been well understood, especially in plants. Numt insertion patterns vary from species to species in different kingdoms. In this study, the patterns were surveyed in nine plant species, and we found some tip-offs. First, when the mitochondrial genome size is relatively large, the portion of the longer Numt is also larger than the short one. Second, the whole genome duplication event increases the ratio of the shorter Numt portion in the size distribution. Third, Numt insertions are enriched in exon regions. This analysis may be helpful for understanding plant evolution.

Introduction to International Ethical Standards Related to Genetics and Genomics

  • Yim, Seon-Hee;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.218-223
    • /
    • 2013
  • The rapid advances in genetic knowledge and technology raise various, sometimes unprecedented, ethical dilemmas in the scientific community as well as the public realm. To deal with these dilemmas, the international community has prepared and issued ethical standards in various formats. In this review, seven international standards regarding genetics and genomics will be briefly introduced in chronological order. Critical reflections on them will not be provided in this review, and naturally, they have their own problems and shortcomings. However, a common set of the principles expressed in them will be highlighted here, because they are still relevant, and many of them will be more relevant in the future. Some of the interesting contents will be selected and described. After that, the morality of one recent event related to whole-genome sequencing and person-identifiable genetic data will be explored based on those international standards.

Genome analysis of Limosilactobacillus fermentum JN2019 applied to tumeric fermentation for animal feed

  • Yoo, Heeseop;Yong, Cheng Chung;Oh, Sejong
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.1204-1206
    • /
    • 2021
  • Limosilactobacillus fermentum JN2019, formerly named Lactobacillus fermentum JN2019, was isolated from kimchi. Its genome was completely sequenced using the PacBio RSII sequencing system to explore beneficial phenotypes. In a previous study, L. fermentum JN2019 was used to ferment the by-product of tumeric for use in livestock feed. The 2.3 Mb genome had a high guanine (G) + cytosine (C) content of 50.6% and a 30 kb plasmid. The data will inform the comprehensive understanding of JN2019 and provide insights for potential applications.

Complete genome sequence of Lactococcus lactis strain K_LL005, a xylose-utilizing bacterium isolated from grasshopper (Oxya chinensis sinuosa)

  • Kim, Hyeri;Guevarra, Robin B.;Cho, Jae Hyoung;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Animal Science and Technology
    • /
    • 제63권1호
    • /
    • pp.191-193
    • /
    • 2021
  • Lactococcus lactis is a fermentative lactic acid bacterium that is used extensively in food fermentations. The L. lactis strain K_LL005 was isolated from the grasshopper (Oxya chinensis sinuosa) gut in Korea. In this study, we reported the complete genome sequence of Lactococcus lactis K_LL005. The final complete genome assembly consist of one circular chromosome (2,375,093 bp) with an overall guanine + cytosine (G + C) content of 35.0%. Annotation results revealed 2,281 protein-coding sequences (CDSs), 19 rRNAs, and 68 tRNA genes. Lactococcus lactis K_LL005 has a gene encoding xylose metabolism such as xylR, xylA, and xylB (xylRAB).

Draft Genome Sequence of the White-Rot Fungus Schizophyllum Commune IUM1114-SS01

  • Kim, Da-Woon;Nam, Junhyeok;Nguyen, Ha Thi Kim;Lee, Jiwon;Choi, Yongjun;Choi, Jaehyuk
    • Mycobiology
    • /
    • 제49권1호
    • /
    • pp.86-88
    • /
    • 2021
  • The monokaryotic strain, Schizophyllum commune strain IUM1114-SS01, was generated from a basidiospore of dikaryotic parental strain IUM1114. It even showed the decolorizing activities for several textile dyes much better than its parental strain. Based on the results of a single-molecule real-time sequencing technology, we present the draft genome of S. commune IUM1114-SS01, comprising 41.1 Mb with GC contents of the genome were 57.44%. Among 13,380 protein-coding genes, 534 genes are carbon hydrate-active enzyme coding genes.

Complete genome sequence of functional probiotic candidate Lactobacillus amylovorus CACC736

  • Soyeon Park;Jung-Ae Kim;Hyun-Jun Jang;Dae-Hyuk Kim;Yangseon Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권2호
    • /
    • pp.473-477
    • /
    • 2023
  • Lactobacillus amylovorus CACC736 was originated from swine feces in Korea. The complete genome sequences of the strain contained one circular chromosome (2,057,809 base pair [bp]) with 38.2% guanine-cytosine (GC) content and two circular plasmids, namely, pCACC736-1 and pCACC736-2. The predicted protein-coding genes, which are encoding the clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins, biosynthesis of bacteriocin (helveticin J), and the related proteins of the bile, acid tolerance. Notably, the genes related to vitamin B-group biosynthesis (riboflavin and cobalamin) were also found in L. amylovorus CACC736. Collectively, the complete genome sequence of the L. amylovorus CACC736 will aid in the development of functional probiotics in the animal industry.

Whole-Genome Sequence of Priestia aryabhattai Strain S2 Isolated from the Rhizosphere of Soybean (Glycine max)

  • Amani Sliti;Min-Ji Kim;GyuDae Lee;Yeong-Jun Park;Jae-Ho Shin
    • 한국미생물·생명공학회지
    • /
    • 제51권3호
    • /
    • pp.296-299
    • /
    • 2023
  • We present the complete genome sequence of Priestia aryabhattai strain S2 isolated from the soybean rhizosphere. The genome consists of a single circular chromosome of 5,070,860 bp with a G+C content of 38.3% and 2 plasmids, P1(148,124 bp, GC content 33.3%) and P2 (76,418 bp, GC content 36.5%).

Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome

  • Suwalak Chitcharoen;Chureerat Phokaew;John Mauleekoonphairoj;Apichai Khongphatthanayothin;Boosamas Sutjaporn;Pharawee Wandee;Yong Poovorawan;Koonlawee Nademanee;Sunchai Payungporn
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.44.1-44.13
    • /
    • 2022
  • Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performed a new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipeline was applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had no viral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases and controls by blastn and blastx analysis. This study is the first report on the full-length HERV-K assembled genomes in the Thai population. Furthermore, the HERV-K integration breakpoint positions were validated and compared between the case and control datasets. Interestingly, Brugada cases contained HERV-K integration breakpoints at promoters five times more often than controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positions that were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and long non-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the human genome.

Analysis of whole genome sequencing and virulence factors of Vibrio vulnificus 1908-10 isolated from sea water at Gadeok island coast

  • Hee-kyung Oh;Nameun Kim;Do-Hyung Kim;Hye-Young Shin;Eun-Woo Lee;Sung-Hwan Eom;Young-Mog Kim
    • Fisheries and Aquatic Sciences
    • /
    • 제26권9호
    • /
    • pp.558-568
    • /
    • 2023
  • Vibrio vulnificus is an aquatic bacterium causing septicemia and wound infection in humans. To understand this pathogen at the genomic level, it was performed whole genome sequencing of a cefoxitin-resistant strain, V. vulnificus 1908-10 possessing virulence-related genes (vvhA, viuB, and vcgC) isolated from Gadeok island coastal seawater in South Korea. The genome of V. vulnificus 1908-10 consisted of two circular contigs and no plasmid. The total genome size was estimated to be 5,018,425 bp with a guanine-cytosine (GC) content of 46.9%. We found 119 tRNA and 34 rRNA genes respectively in the genome, along with 4,352 predicted protein sequences. Virulence factor (VF) analysis further revealed that V. vulnificus 1908-10 possess various virulence genes in classes of adherence, antiphagocytosis, chemotaxis and motility, iron uptake, quorum sensing, secretion system, and toxin. In the comparison of the presence/absence of virulence genes, V. vulnificus 1908-10 had fur, hlyU, luxS, ompU, pilA, pilF, rtxA, rtxC, and vvhA. Of the 30 V. vulnificus comparative strains, 80% of the C-genotype strains have all of these genes, whereas 40% of the E-genotype strains have all of them. In particular, pilA were identified in 80% of the C-type strains and 40% of the E-type strains, showing more difference than other genes. Therefore, V. vulnificus 1908-10 had similar VF characteristics to those of type C strains. Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin of V. vulnificus 1908-10 contained 8 A-type repeats (GXXGXXXXXG), 25 B.1-type repeats (TXVGXGXX), 18 B2-type repeats (GGXGXDXXX), and 7 C-type repeats (GGXGXDXXX). The National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) showed that the RtxA protein of V. vulnificus 1908-10 had the effector domain in the order of cross-liking domain (ACD)-C58_PaToxP-like domain- α/β hydrolase-C58_PaToxP-like domain.

Validation of Customized Cancer Panel for Detecting Somatic Mutations and Copy Number Alterations

  • Choi, Su-Hye;Jung, Seung-Hyun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.136-141
    • /
    • 2017
  • Accurate detection of genomic alterations, especially druggable hotspot mutations in tumors, has become an essential part of precision medicine. With targeted sequencing, we can obtain deeper coverage of reads and handle data more easily with a relatively lower cost and less time than whole-exome or whole-genome sequencing. Recently, we designed a customized gene panel for targeted sequencing of major solid cancers. In this study, we aimed to validate its performance. The cancer panel targets 95 cancer-related genes. In terms of the limit of detection, more than 86% of target mutations with a mutant allele frequency (MAF) <1% can be identified, and any mutation with >3% MAF can be detected. When we applied this system for the analysis of Acrometrix Oncology Hotspot Control DNA, which contains more than 500 COSMIC mutations across 53 genes, 99% of the expected mutations were robustly detected. We also confirmed the high reproducibility of the detection of mutations in multiple independent analyses. When we explored copy number alterations (CNAs), the expected CNAs were successfully detected, and this result was confirmed by target-specific genomic quantitative polymerase chain reaction. Taken together, these results support the reliability and accuracy of our cancer panel in detecting mutations. This panel could be useful for key mutation profiling research in solid tumors and clinical translation.