• 제목/요약/키워드: Whole genome

검색결과 582건 처리시간 0.023초

Genome-based identification of strain KCOM 1265 isolated from subgingival plaque at the species level

  • Park, Soon-Nang;Lim, Yun Kyong;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제45권2호
    • /
    • pp.70-75
    • /
    • 2020
  • The aim of this study was to identify strain KCOM 1265 isolated from subgingival plaque at the species level by comparing 16S ribosomal RNA gene (16S rDNA) and genome sequences. The whole genome of strain KCOM 1265 was extracted using the phenol-chloroform extraction method. 16S rDNA was amplified using polymerase chain reaction and sequenced using the dideoxy chain termination method. Pairwise genome comparison was performed using average nucleotide identity (ANI) and genome-to-genome distance (GGD) analyses. The data showed that the percent similarity of 16S rDNA sequence of strain KCOM 1265 was 99.6% as compared with those of Fusobacterium polymorphum ATCC 10953T and Fusobacterium hwasookii KCOM 1249T. The ANI values of strain KCOM 1265 with F. polymorphum ATCC 10953T and F. hwasookii KCOM 1249T were 95.8% and 93.0%, respectively. The GGD values of strain KCOM 1265 with F. polymorphum ATCC 10953T and F. hwasookii KCOM 1249T were 63.9% and 49.6%, respectively. These results indicate that strain KCOM 1265 belongs to F. polymorphum.

Whole Genome Optical Mapping

  • Waterman, Michael
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.3-3
    • /
    • 2005
  • PDF

Whole Genome Sequence of Lactiplantibacillus plantarum HOM3204 and Its Antioxidant Effect on D-Galactose-Induced Aging in Mice

  • Di Zhang;Heesung Shin;Tingting Wang;Yaxin Zhao;Suwon Lee;Chongyoon Lim;Shiqi Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1030-1038
    • /
    • 2023
  • Lactiplantibacillus plantarum, previously named Lactobacillus plantarum, is a facultative, homofermentative lactic acid bacterium widely distributed in nature. Several Lpb. plantarum strains have been demonstrated to possess good probiotic properties, and Lpb. plantarum HOM3204 is a potential probiotic strain isolated from homemade pickled cabbage plants. In this study, whole-genome sequencing was performed to acquire genetic information and predict the function of HOM3204, which has a circular chromosome of 3,232,697 bp and two plasmids of 48,573 and 17,060 bp, respectively. Moreover, various oxidative stress-related genes were identified in the strain, and its antioxidant activity was evaluated in vitro and in vivo. Compared to reference strains, the intracellular cell-free extracts of Lpb. plantarum HOM3204 at a dose of 1010 colony-forming units (CFU)/ml in vitro exhibited stronger antioxidant properties, such as total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging rate, superoxide dismutase activity, and glutathione (GSH) content. Daily administration of 109 CFU Lpb. plantarum HOM3204 for 45 days significantly improved the antioxidant function by increasing the glutathione peroxidase activity in the whole blood and GSH concentration in the livers of D-galactose-induced aging mice. These results suggest that Lpb. plantarum HOM3204 can potentially be used as a food ingredient with good antioxidant properties.

연체동물 유전체 연구현황 (Current Status of Genome Research in Phylum Mollusks)

  • 방인석;한연수;이준상;이용석
    • 한국패류학회지
    • /
    • 제26권4호
    • /
    • pp.317-326
    • /
    • 2010
  • The availability of fast and inexpensive sequencing technology has enabled researchers around the world to conduct many genome sequencing and expressed sequence tag (EST) projects of diverse organisms. In recent years, whole genome projects have been undertaken to sequence ten species from the phylum Mollusca. These include Aplysia californica, Lottia gigantea, Crassostrea virginica, Spisula solidissima, Mytilus californianus, Biomphalaria glabrata, Crepidula fornicata, Elysia chlorotica, Lottia scutum and Radix balthica. Additionally, complete mitochondrial genomes of 91 mollusks have been reported. In Korea, EST projects have been conducted in nine mollusk species that include Nesiohelix samarangae, Pisidium (Neopisidium) coreanum, Physa acuta, Incilaria fruhstorferi, Meretrix lusoria, Ruditapes philippinarum, Nordotis gigantea, Crassostrea gigas and Laternula elliptica. Finally, the mitochondrial genome projects from the Pacific Oyster (Crassostrea gigas) and the rock shell (Thais clavigera) have been conducted and reported. However, no systemic mollusk genome project has so far been conducted in Korea. In this report, the current status and research trends in mollusk genome study in Korea will be discussed.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • 원예과학기술지
    • /
    • 제35권2호
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

Complete Mitochondrial Genome and Phylogenetic Analysis for the Korean Field Mouse Apodemus peninsulae Found on Baengnyeong Island in South Korea

  • Jung A Kim;Hye Sook Jeon;Seung Min Lee;Hong Seomun;Junghwa An
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제4권2호
    • /
    • pp.69-71
    • /
    • 2023
  • The Korean field mouse, Apodemus peninsulae mitochondrial genome has previously been reported for mice obtained from mainland Korea and China. In this investigation the complete mitochondrial genome sequence for a mouse obtained from Baengnyeong Island (BI) in South Korea was determined using high-throughput whole-genome sequencing for the first time. The circular genome was determined to be 16,268 bp in length. It was found to be composed of a typical complement gene that encodes 13 protein subunits of enzymes involved in oxidative phosphorylation, two ribosomal RNAs, 22 transfer RNAs, and one control region. Phylogenetic analysis involved 13 amino acid sequences and demonstrated that the A. peninsulae genome from BI was more closely grouped with two Korean samples (HQ660074 and JN546584) than the Chinese (KP671850) sample. This study verified the evolutionary status of A. peninsulae inhabiting the BI at the molecular level, and could be a significant supplement to the genetic background.

배추 유전체 염기서열 해독 전략과 현황 (The strategy and current status of Brassica rapa genome project)

  • 문정환;권수진;박범석
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.153-165
    • /
    • 2010
  • Brassica rapa is considered an ideal candidate to act as a reference species for Brassica genomic studies. Among the three basic Brassica species, B. rapa (AA genome) has the smallest genome (529 Mbp), compared to B. nigra (BB genome, 632 Mbp) and B. oleracea (CC genome, 696 Mbp). There is also a large collection of available cultivars of B. rapa, as well as a broad array of B. rapa genomic resources available. Under international consensus, various genomic studies on B. rapa have been conducted, including the construction of a physical map based on 22.5X genome coverage, end sequencing of 146,000 BACs, sequencing of >150,000 expressed sequence tags, and successful phase 2 shotgun sequencing of 589 euchromatic region-tiling BACs based on comparative positioning with the Arabidopsis genome. These sequenced BACs mapped onto the B. rapa genome provide beginning points for genome sequencing of each chromosome. Applying this strategy, all of the 10 chromosomes of B. rapa have been assigned to the sequencing centers in seven countries, Korea, UK, China, India, Canada, Australia, and Japan. The two longest chromosomes, A3 and A9, have been sequenced except for several gaps, by NAAS in Korea. Meanwhile a China group, including IVF and BGI, performed whole genome sequencing with Illumina system. These Sanger and NGS sequence data will be integrated to assemble a draft sequence of B. rapa. The imminent B. rapa genome sequence offers novel insights into the organization and evolution of the Brassica genome. In parallel, the transfer of knowledge from B. rapa to other Brassica crops would be expected.