• Title/Summary/Keyword: Whole cell voltage clamp technique

Search Result 81, Processing Time 0.029 seconds

Voltage-Dependent Inactivation of Calcium Currents in the Mouse Eggs

  • Park, Young-Geun;Yang, Young-Seon;Yum, Myung-Kul;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.125-131
    • /
    • 1991
  • Inactivation properties of Ca current in the unfertilized eggs of mouse were studied by using the whole cell voltage clamp technique and single microelectrode voltage clamp technique. Membrane potential was held at -80 mV and step depolarization was applied from -50 mV to 50 mV for $200{\sim}500\;ms$. Peak of inward Ca currents was $-2{\sim}-4\;nA$ at a membrane Potentials from -20 mV to 0 mV and outward currents were not observed within the membrane voltage range studied $(-50{\sim}50\;mV)$. Inward currents were fully inactivated within 200 ms after the onset of step depolarization. As the membrane became depolarized, time constant of inactivation (${\tau}$) was decreased but remained around $20{\sim}30\;ms$ beyond 10 mV. When $Ca^{2+}$ was used as a charge earlier, inactivation of inward $Ca^{2+}$ current also occured and time course of inactivation was similar to that of $Ca^{2+}$ currents as charge carrier. In the bathing solution containing high potassium $(131\;mM\;K^+)$, process of inactivation was not changed except a parallel decrease of value for the entire range of membrane potential. Steady-state inactivation of the $current(h_{\infty})$ obtained from the double pulse experiment showed the voltage-dependent change. These results suggested that inactivation of Ca currents in the unfertilized eggs of mouse was voltage-dependent.

  • PDF

Effect of Fluid Pressure on L-type $Ca^{2+}$ Current in Rat Ventricular Myocytes (백서 심실 근세포 L형 $Ca^{2+}$ 전류에 대한 유체압력의 효과)

  • Lee Sun-Woo;Woo Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.111-117
    • /
    • 2006
  • Cardiac chambers serve as mechanosensory systems during the haemodynamic or mechanical disturbances. To examine a possible role of fluid pressure (FP) in the regulatien of atrial $Ca^{2+}$ signaling we investigated the effect of FP on L-type $Ca^{2+}$ current $(I_{Ca})$ in rat ventricular myocytes using whole-cell patch-clamp technique. FP $(\sim40cm\;H_2O)$ was applied to whole area of single myocytes with electronically controlled micro-jet system. FP suppressed the magnitude of peak $I_{Ca}$ by $\cong25\%$ at 0 mV without changing voltage dependence of the current-voltage relationship. FP significantly accelerated slow component in inactivation of $I_{Ca}$, but not its fast component. Analysis of steady-state inactivation curve revealed a reduction of the number of $Ca^{2+}$ channels available for activity in the presence of FP. Dialysis of myocytes with high concentration of immobile $Ca^{2+}$ buffer partially attenuated the FP-induced suppression of $I_{Ca}$. In addition, the intracellular $Ca^{2+}$ buttering abolished the FP-induced acceleration of slow component in $I_{Ca}$ inactivation. These results indicate that FP sup-presses $Ca^{2+}$ currents, in part, by increasing cytosolic $Ca^{2+}$ concentration.

Inhibition of Pacemaker Activity of Interstitial Cells of Cajal by Hydrogen Peroxide via Activating ATP-sensitive $K^+$ Channels

  • Choi Seok;Parajuli Shankar Prasad;Cheong Hyeon-Sook;Paudyal Dilli Parasad;Yeum Cheol-Ho;Yoon Pyung-Jin;Jun Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • To investigate whether hydrogen peroxide($H_2O_2$) affects intestinal motility, pacemaker currents and membrane potential were recorded in cultured interstitial cells of Cajal(ICC) from murine small intestine by using a whole-cell patch clamp. In whole cell patch technique at $30^{\circ}C$, ICC generated spontaneous pacemaker potential under current clamp mode(I=0) and inward currents(pacemaker currents) under voltage clamp mode at a holding potential of -70 mV. When ICC were treated with $H_2O_2$ in ICC, $H_2O_2$ hyperpolarized the membrane potential under currents clamp mode and decreased both the frequency and amplitude of pacemaker currents and increased the resting currents in outward direction under voltage clamp mode. Also, $H_2O_2$ inhibited the pacemaker currents in a dose-dependent manner. Because the properties of $H_2O_2$ action on pacemaker currents were same as the effects of pinacidil(ATP-sensitive $K^+$ channels opener), we tested the effects of glibenclamide(ATP-sensitive $K^+$ channels blocker) on $H_2O_2$ action in ICC, and found that the effects of $H_2O_2$ on pacemaker currents were blocked by co- or pre- treatment of glibenclamide. These results suggest that $H_2O_2$ inhibits pacemaker currents of ICC by activating ATP-sensitive $K^+$ channels.

Low-Voltage Activated $Ca^{2+}$ Current Carried via T-Type Channels in the Mouse Egg

  • Yang, Young-Sun;Park, Young-Geun;Cho, Soo-Wan;Cheong, Seung-Jin;Haan, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.107-114
    • /
    • 1993
  • Most of voltage operated $Ca^{2+}$ channels can be divided into three types (T-, N-, and L-type), according to the electrical and pharmacological properties. Their distribution is closely related to cell specific functions. Properties of the voltage activated $Ca^{2+}$ current in mouse eggs were examined to classify channel types and to deduce the function by using whole cell voltage clamp technique. $Ca^{2+}$ currents appeared below -40 mV and reached a maximum at -15 mV (half maximum was -31 mV), then decayed rapidly (inactivation time constant ${\tau}=28.2{\pm}9.59$ ms at -10 mV within 50 ms after the onset of step depolarization. Activation and inactivation of the $Ca^{2+}$ channel was steeply dependent on voltage, in a relatively low range of $-70\;mV{\sim}-10 mV,$ half maximum of activation was -31 mV and that of inactivation was -39 mV, respectively. This current was not decreased significantly by nifedipine, a specific dihydropyridine $Ca^{2+}$ channel blocker in the range of $1\;{\mu}M\;to\;100{\mu}M.$ The inhibitory effect of $Ni^{2+}\;on\;Ca^{2+}$ current was greater than that of $Cd^{2+}.$ The conductance of $Ba^{2+}$ through the channel was equal to or lower than that of $Ca^{2+}$ These results implied that $Ca^{2+}$ current activated at a lower voltage in the mouse egg is carried via a $Ca^{2+}$ channel with similar properties that of the T-type channel.

  • PDF

Protein Kinase Modulates the $GABA_c$ Currents in Cone-horizontal Cell Axon-terminals Isolated from Catfish Retina

  • Paik, Sun-Sook;Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.54-54
    • /
    • 1999
  • Protein kinase modulation of gamma-aminobutyric acid C (GABA$_{c}$) currents in freshly dissociated catfish retinal cone-horizontal cell axon-terminals was studied under voltage clamp with the use of the whole cell patch-clamp technique. Responses to pulses of GABA were monitored in intracellular application of adenosin 3',5'-cycle monophophate (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC) activators, and their inhibitors or inactive analogues.(omitted)d)

  • PDF

Internal Perfusion of ADP in Mouse Oocytes Increases Outward $K^+$ Currents (ADP에 의한 생쥐 난자의 외향전류 증가 효과)

  • 한재희;박홍기;강다원;이상미;이상호;배인하;홍성근
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.243-250
    • /
    • 2000
  • To find the mechanism underlying the ADP-induced increase in the outward current in ovulated mouse oocytes, we examined changes in voltage-dependent currents using the whole cell voltage clamp technique and the internal perfusion technique. Eggs were collected from the oviduct of superovulated mice with PMSG and hCG. Membrane potential was held at -60 mV (or -80 mV in the case of recording $Ca^{2+}$ currents) and step depolarizations or hyperpolarizations were applied for 300 ms. By step depolarizations, outward currents comprising steady-state and time-dependent components were elicited. They were generated in response to the positive potential more than 20 mV with severe outward rectification and were blocked by external TEA, a specific $K^{+}$ channel blocker, suggesting that they be carried via $K^{+}$ channels. Internally-perused 5 mM ADP gradually increased outward $K^{+}$ currents (IK) 1 min after perfusion of ADP and reached slowly to maximum (150~170%) 5 min later over the positive potential range, implying that ADP might not be acted directly to the $K^{+}$ channels. IK were decreased by 5 mM ATP without affecting the steady-state component of outward current. In contrast to the effect of ADP and ATP on IK, both effect of ATP and ADP on inward $Ca^{2+}$ currents (ICa) could not be detected due to the continuous decrease in current amplitudes with time-lapse ("run-down" phenomena). To check if there is a G protein-involved regulation in the ionic current of mouse oocytes, 1 mM GTP was applied to the cytoplasmic side, and the outward current and inward currents were recorded. ICa was promptly increased in the presence of GTP whereas IK was not changed. from these results, it is concluded that the ATP-dependent regulation is likely linked in the ADP-induced increase in the outward $K^{+}$ current, and G protein-involved cellular signalling might affect ion channels carrying $Ca^{2+}$ and $K^{+}$ in mouse oocytes.

  • PDF

Effect of Metabolic Inhibition on Inward Rectifier K Current in Single Rabbit Ventricular Myocytes (토끼 단일 심근세포에서 대사억제시 Inward Rectifier$(I_{K1})$의 변화)

  • Chung, Yu-Jeong;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.741-748
    • /
    • 1997
  • In the present study, we have investigated the effect of metabolic inhibition on the inward rectifier K current ($I_{K1}$). Using whole cell patch clamp technique we applied voltage ramp from +80 mV to -140 mV at a holding potential of -30 mV and recorded the whole cell current in single ventricular myocytes isolated from the rabbit heart. The current-voltage relationship showed N-shape (a large inward current and little outward current with a negative slope) which is a characteristic of $I_{K1}$. Application of 0.2 mM dinitrophenol (DNP, an uncoupler of oxidative phosphorylation as a tool for chemical hypoxia) to the bathing solution with the pipette solution containing 5 mM ATP, produced a gradual increase of outward current followed by a gradual decrease of inward current with little change in the reversal potential (-80 mV). The increase of outward current was reversed by glibenclamide ($10\;{\mu}M$), suggesting that it is caused by the activation of $K_{ATP}$. When DNP and glibenclamide were applied at the same time or glibenclamide was pretreated, DNP produced same degree of reduction in the magnitude of the inward current. These results show that metabolic inhibition induces not only the increase of $K_{ATP}$ channel but also the decrease of $I_{K1}$. Perfusing the cell with ATP-free pipette solution induced the changes very similar to those observed using DNP. Long exposure of DNP (30 min) or ATP-free pipette solution produced a marked decrease of both inward and outward current with a significant change in the reversal potential. Above results suggest that the decrease of $I_{K1}$ may contribute to the depolarisation of membrane potential during metabolic inhibition.

  • PDF

Effects of Bay K, cAMP and Isoprenaline on the Na-Ca Exchange Current of Single Rabbit Atrial Cells (토끼 심방근에서 Na-Ca 교환 전류에 대한 Bay K, cAMP, Isoprenaline 효과)

  • Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.377-388
    • /
    • 1990
  • Ca movements during the late plateau phase in rabbit atrium implicate Na-Ca exchange. In single atrial cells isolated from the rabbit the properties of the inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The inward currents were recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of -70 mV. Followings are the results obtained: 1) When stimulated every 30 sec, the inward currents were activated and reached peak values $6{\sim}12\;ms$ after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2) The current decayed spontaneously from the peak activation and the timecourse of the relaxation showed two different phases: fast and slow phase. 3) The recovery of the inward current was tested by paired pulse of various interval. The peak current recovered exponentialy with a time course similar to that of Ca current recovery. 4) Relaxation timecourse was also affected by pulse interval and time constant was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5) The peak inward current was increased by long prepulse stimulation, Bay K, isoprenaline or c-AMP. 6) The relaxation time constant of the inward current was prolonged by Bay K or c-AMP, and shortened by isoprenaline. From the above results, it could be concluded that increase of the calcium current potentiates and prolongs intracellular calcium transients, while shortening of the timecourse by isoprenaline or short interval stimulations might be due to the facilitation of Ca uptake by SR.

  • PDF

Background Non-Selective Cation Channels in Rat Atrial Myocytes

  • Youm, Jae-Boum;Zhang, Yin-Hua;Ho, Won-Kyung;Earm, Yung-E
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.38-38
    • /
    • 1998
  • Resting membrane potential of atrial myocytes is less negative than K+ equilibrium potential, suggesting the presence of ion channels carrying inward currents. We investigated the background Na$\^$+/ current in rat atrial myocytes using both conventional whole cell voltage clamp technique and single channel recording.(omitted)

  • PDF

Inactivation of N-Type Calcium Current in Rat Sympathetic Neurons

  • Lee, Mi-Sun;Goo, Yong-Sook
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.26-26
    • /
    • 2001
  • Inactivation of N-type calcium current has been reported to be both voltage dependent and Ca$\^$2+/ dependent. We have investigated the effects of Ba$\^$2+/ and Ca$\^$2+/ on N-channel inactivation in rat superior cervical ganglion neurons using the whole cell configuration of patch clamp technique. Inactivation was larger in Ca$\^$2+/ than in Ba$\^$2+/ even with 20 mM BAPTA.(omitted)

  • PDF