Effect of Fluid Pressure on L-type $Ca^{2+}$ Current in Rat Ventricular Myocytes

백서 심실 근세포 L형 $Ca^{2+}$ 전류에 대한 유체압력의 효과

  • Lee Sun-Woo (College of Pharmacy, Chungnam National University) ;
  • Woo Sun-Hee (College of Pharmacy, Chungnam National University)
  • Published : 2006.04.01

Abstract

Cardiac chambers serve as mechanosensory systems during the haemodynamic or mechanical disturbances. To examine a possible role of fluid pressure (FP) in the regulatien of atrial $Ca^{2+}$ signaling we investigated the effect of FP on L-type $Ca^{2+}$ current $(I_{Ca})$ in rat ventricular myocytes using whole-cell patch-clamp technique. FP $(\sim40cm\;H_2O)$ was applied to whole area of single myocytes with electronically controlled micro-jet system. FP suppressed the magnitude of peak $I_{Ca}$ by $\cong25\%$ at 0 mV without changing voltage dependence of the current-voltage relationship. FP significantly accelerated slow component in inactivation of $I_{Ca}$, but not its fast component. Analysis of steady-state inactivation curve revealed a reduction of the number of $Ca^{2+}$ channels available for activity in the presence of FP. Dialysis of myocytes with high concentration of immobile $Ca^{2+}$ buffer partially attenuated the FP-induced suppression of $I_{Ca}$. In addition, the intracellular $Ca^{2+}$ buttering abolished the FP-induced acceleration of slow component in $I_{Ca}$ inactivation. These results indicate that FP sup-presses $Ca^{2+}$ currents, in part, by increasing cytosolic $Ca^{2+}$ concentration.

Keywords

References

  1. Beuckelmann, D. J. and Wier, W. G. : Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cell. J. Physiol. 405, 233 (1998)
  2. Nabauer, M., Callewaert, G., Cleemann, L. and Morad, M. : Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800 (1989) https://doi.org/10.1126/science.2543067
  3. Niggli, E. and Lederer, W. J. : Voltage-independent calcium release in heart muscle. Science 250, 565 (1990) https://doi.org/10.1126/science.2173135
  4. Cleemann, L. and Morad, M. : Role of $Ca^{2+}$ channel in cardiac excitation-contraction coupling in the rat: evidence from $Ca^{2+}$/ transients and contraction. J. Physiol. 432, 283 (1991) https://doi.org/10.1113/jphysiol.1991.sp018385
  5. Sham, J. S. K., Cleemann, L. and Morad, M. : Functional coupling of $Ca^{2+}$ channels and ryanodine receptors in cardiac myocytes. Proc. Natl. Acad. Sci. USA 92, 121 (1995)
  6. Adachi-Akahane, S., Cleemann, L. and Morad, M. : Crosssignaling between L-type $Ca^{2+}$ channels and ryanodine receptors in rat ventricular myocytes. J. Gen. Physiol. 108, 435 (1994) https://doi.org/10.1085/jgp.108.5.435
  7. Lakatta, E. G. : Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 73, 413 (1993) https://doi.org/10.1152/physrev.1993.73.2.413
  8. Nazir, S. A. and Lab, M. J. : Mechanoelectric feedback and atrial arrhythmias. Cardiovasc. Res. 31, 52 (1996) https://doi.org/10.1016/S0008-6363(95)00158-1
  9. Kohl, P., Hunter, P. and Noble, D. : Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog. Biophys. Mol. Biol. 71, 91 (1999) https://doi.org/10.1016/S0079-6107(98)00038-8
  10. Copper, G., Kent, R. L., Uboh, C. E., Thompson, E. W. and Marino, T. A. : Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J. Clin. Invest. 75, 1403 (1985) https://doi.org/10.1172/JCI111842
  11. Komuro, I., Kaida, T., Shibazaki, Y., Kurabayashi, M., Katoh, Y., Hoh, E., Takaku, F. and Yazaki, Y. : Stretching cardiac myocytes stimulates protooncogene expression. J. Biol. Chem. 265, 3595 (1990)
  12. Bode, F., Sachs, F. and Franz, M. R. : Tarantula peptide inhibits atrial fibrillation. Nature 409, 14 (2001)
  13. Kamkin, A., Kiseleva, I., Wagner, K. D., Bohm, J., Theres, H., Gunther, J. and Scholz, H. : Characterization of stretchactivated ion currents in isolated atrial myocytes from human hearts. Pflugers Arch. 446, 339 (2003) https://doi.org/10.1007/s00424-002-0948-0
  14. Sasaki, N., Mitsuiye, T. and Noma, A. : Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart. Jpn. J. Physiol. 42, 957 (1992) https://doi.org/10.2170/jjphysiol.42.957
  15. Matsuda, N., Hagiwara, N., Shoda, M., Kasanuki, H. and Hosoda, S. : Enhancement of the L-type $Ca^{2+}$ current by mechanical stimulation in single rabbit cardiac myocytes. Circ. Res. 78, 650 (1996) https://doi.org/10.1161/01.RES.78.4.650
  16. Li, G.-R., Zhang, M., Satin, L. S. and Baumgarten, C. M. : Biphasic effects of cell volume on excitation-contraction coupling in rabbit ventricular myocytes. Am. J. Physiol. 282, H1270 (2002) https://doi.org/10.1152/ajpcell.01275.2000
  17. Ruwhof, C., van Wamel, J. E. T., Noordzij, L. A. W., Aydin, S., Harper, J. C. R. and van der Laarse, A. : Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. Cell Calcium 29, 73 (2001) https://doi.org/10.1054/ceca.2000.0158
  18. Hongo, K. and LeGuennec, J. Y. : Changes in $[Ca^{2+}]_i,\;[Na^+]_i$ and $Ca^{2+}$ current in isolated rat ventricular myocytes following an increase in cell length. J. Physiol. 491, 609 (1996) https://doi.org/10.1113/jphysiol.1996.sp021243
  19. Woo, S. H., Risius, T., Javaheri, A. and Morad, M. : Effect of shear stress on local and focal $Ca^{2+}$ signaling and membrane current in rat atrial myocytes. Biophys. J. 86, 107a (2004)
  20. Woo, S. H., Cleemann, L. and Morad, M. : $Ca^{2+}$ current-gated focal and local $Ca^{2+}$ release in rat atrial myocytes: evidence from rapid 2-D confocal imaging. J. Physiol. 543, 439 (2002) https://doi.org/10.1113/jphysiol.2002.024190
  21. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth F. J. : Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85 (1981) https://doi.org/10.1007/BF00656997
  22. Lee, S. Y., Lee, C. O., Morad, M. and Woo, S. H. : Modulation of atrial excitation-contraction coupling by flow-mediated shear stress. Biophys. J. 88, 139a (2005)