• Title/Summary/Keyword: Whole brain radiation therapy

Search Result 50, Processing Time 0.026 seconds

Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

  • Lee, Yong-Woo;Cho, Hyung-Joon;Lee, Won-Hee;Sonntag, William E.
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.357-370
    • /
    • 2012
  • Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tumor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cellular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the identification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defining a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.

Clinical application of RapidArc volumetric modulated arc therapy as a component in whole brain radiation therapy for poor prognostic, four or more multiple brain metastases

  • Lee, Seung-Heon;Lee, Kyu-Chan;Choi, Jin-Ho;Kim, Hye-Young;Lee, Seok-Ho;Sung, Ki-Hoon;Kim, Yun-Mi
    • Radiation Oncology Journal
    • /
    • v.30 no.2
    • /
    • pp.53-61
    • /
    • 2012
  • Purpose: To determine feasibility of RapidArc in sequential or simultaneous integrated tumor boost in whole brain radiation therapy (WBRT) for poor prognostic patients with four or more brain metastases. Materials and Methods: Nine patients with multiple (${\geq}4$) brain metastases were analyzed. Three patients were classified as class II in recursive partitioning analysis and 6 were class III. The class III patients presented with hemiparesis, cognitive deficit, or apraxia. The ratio of tumor to whole brain volume was 0.8-7.9%. Six patients received 2-dimensional bilateral WBRT, (30 Gy/10-12 fractions), followed by sequential RapidArc tumor boost (15-30 Gy/4-10 fractions). Three patients received RapidArc WBRT with simultaneous integrated boost to tumors (48-50 Gy) in 10-20 fractions. Results: The median biologically effective dose to metastatic tumors was 68.1 $Gy_{10}$ and 67.2 $Gy_{10}$ and the median brain volume irradiated more than 100 $Gy_3$ were 1.9% (24 $cm^3$) and 0.8% (13 $cm^3$) for each group. With less than 3 minutes of treatment time, RapidArc was easily applied to the patients with poor performance status. The follow-up period was 0.3-16.5 months. Tumor responses among the 6 patients who underwent follow-up magnetic resonance imaging were partial and stable in 3 and 3, respectively. Overall survival at 6 and 12 months were 66.7% and 41.7%, respectively. The local progression-free survival at 6 and 12 months were 100% and 62.5%, respectively. Conclusion: RapidArc as a component in whole brain radiation therapy for poor prognostic, multiple brain metastases is an effective and safe modality with easy application.

Clinical Observation of Whole Brain Radiotherapy Concomitant with Targeted Therapy for Brain Metastasis in Non-small Cell Lung Cancer Patients with Chemotherapy Failure

  • Cai, Yong;Wang, Ji-Ying;Liu, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5699-5703
    • /
    • 2013
  • Objective: To investigate the clinical effects of whole brain radiotherapy concomitant with targeted therapy for brain metastasis in non-small cell lung cancer (NSCLC) patients with chemotherapy failure. Materials and Methods: Of the 157 NSCLC patients with chemotherapy failure followed by brain metastasis admitted in our hospital from January 2009 to August 2012, the combination group (65 cases) were treated with EGFR-TKI combined with whole brain radiotherapy while the radiotherapy group (92 cases) were given whole brain radiotherapy only. Short-term effects were evaluated based on the increased MRI in brain 1 month after whole brain radiotherapy. Intracranial hypertension responses, hematological toxicity reactions and clinical effects of both groups were observed. Results: There were more adverse reactions in the combination group than in radiotherapy group, but no significant differences were observed between the two groups in response rate (RR) and disease control rate (DCR) (P>0.05). Medium progression free survival (PFS), medium overall survival (OS) and 1-year survival rate in combination group were 6.0 months, 10.6 months and 42.3%, while in the radiotherapy group they were 3.4 months, 7.7 months and 28.0%, respectively, which indicated that there were significant differences in PFS and OS between the two groups (P<0.05). Additionally, RPA grading of each factor in the combination group was a risk factor closely related with survival, with medium PFS in EGFR and KRAS mutation patients being 8.2 months and 11.2 months, and OS being 3.6 months and 6.3 months, respectively. Conclusions: Whole brain radiotherapy concomitant with target therapy is favorable for adverse reaction tolerance and clinical effects, being superior in treating brain metastasis in NSCLC patients with chemotherapy failure and thus deserves to be widely applied in the clinic.

Evaluation of the reduced scalp dose at Volumetric Modulated Arc Therapy(VMAT) (전뇌조사의 체적변조회전치료 시 두피선량 감소에 관한 평가)

  • Kim, Jeong-Ho;Bae, Seok-Hwan;Kim, Ki-Jin;Yoo, Se-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6187-6192
    • /
    • 2014
  • The use of WBRT(whole brain radiation therapy) has increased due to the increase in the incidence of metastatic brain tumors. The development of radiation therapy techniques is expected to improve the quality of life. The VMAT (Volumetric Modulated Arc Therapy) is an excellent treatment technique that can distinguish the dose in each volume. Therefore, this study compared conventional WBRT and VMAT for hair loss according to the scalp dose using a head phantom. The CI (Conformity Index), HI (Homogeneity Index) and QOC (Quality of Coverage) were measured brain tissue. A 20 percent and 50 percent dose was measured at the scalp, eyeball, lens, and c-spine. Conventional WBRT is excellent at 10 percent of brain tissue. VMAT is far superior at 1000 percent at the other organs. VMAT at the prescribed dose can be used as radiation therapy of metastatic brain tumors with less hair loss.

Hippocampal Sparing Whole Brain Radiotherapy and Integrated Simultaneous Boost vs Stereotactic Radiosurgery Boost: A Comparative Dosimetric Planning Study

  • Cheah, Soon Keat;Matthews, Thomas;Teh, Bin Sing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4233-4235
    • /
    • 2016
  • Background: Whole brain radiotherapy (WBRT) and stereotactic radiosurgery were frequently used to palliate patients with brain metastases. It remains controversial which modality or combination of therapy is superior especially in the setting of limited number of brain metastases. The availability of newer medical therapy that improves survival highlighted the importance of reducing long term radiation toxicity associated with WBRT. In this study, we aim to demonstrate the hippocampal sparing technique with whole brain and integrated simultaneous boost Materials and Methods: Planning data from 10 patients with 1-5 brain metastases treated with SRS were identified. Based on the contouring guideline from RTOG atlas, we identified and contoured the hippocampus with 5mm isocentric expansion to form the hippocampal avoidance structure. The plan was to deliver hippocampal sparing whole brain radiotherapy (HSWBRT) of 30 Gy in 10 fractions and simultaneous boost to metastatic lesions of 30 Gy in 10 fractions each. Results: The PTV, hippocampus and hippocampal avoidance volumes ranges between 1.00 - 39.00 cc., 2.50 - 5.30 cc and 26.47 - 36.30 cc respectively. The mean hippocampus dose for the HSWBRT and HSWBRT and SIB plans was 8.06 Gy and 12.47 respectively. The max dose of optic nerve, optic chiasm and brainstem were kept below acceptable range of 37.5 Gy. Conclusions: The findings from this dosimetric study demonstrated the feasibility and safety of treating limited brain metastases with HSWBRT and SIB. It is possible to achieve the best of both worlds by combining HSWBRT and SIB to achieve maximal local intracranial control while maintaining as low a dose as possible to the hippocampus thereby preserving memory and quality of life.

Survival of Brain Metastatic Patients in Yazd, Iran

  • Akhavan, Ali;Binesh, Fariba;Heidari, Samaneh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3571-3574
    • /
    • 2014
  • Background: Brain metastasis occurs when cancerous cells come from a known (or sometimes an unknown) primary tumor to the brain and implant and grow there. This event is potentially lethal and causes neurologic symptoms and signs. These patients are treated in order to decrease their neurologic problems, increase quality of life and overall survival. Materials and Methods: In this study we evaluated clinical characteristics of 206 patients with brain metastases referred to our center from 2004 to 2011. Results: The mean age was 53.6 years. The primary tumors were breast cancer (32%), lung cancer (24.8%), lymphoma (4.4%), sarcoma (3.9%), melanoma (2.9%), colorectal cancer (2.4%) and renal cell carcinoma (1.5%). In 16.5% of the patients, brain metastasis was the first presenting symptom and the primary site was unknown. Forty two (20.4%) patients had a single brain metastasis, 18 patients (8.7%) had two or three lesions, 87 (42.2%) patients had more than three lesions. Leptomeningeal involvement was seen in 49 (23.8%) patients. Thirty five (17%) had undergone surgical resection. Whole brain radiation therapy was performed for all of the patients. Overall survival was 10.1 months (95%CI; 8.65-11.63). One and two year survival was 27% and 12% respectively. Conclusions: Overall survival of patients who were treated by combination of surgery and whole brain radiation therapy was significantly better than those who were treated with whole brain radiation therapy only [13.8 vs 9.3 months (p=0.03)]. Age, sex, primary site and the number of brain lesions did not show significant relationships with overall survival.

Phenytoin Induced Erythema Multiforme after Cranial Radiation Therapy

  • Kazanci, Atilla;Tekkok, Ismail Hakki
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.2
    • /
    • pp.163-166
    • /
    • 2015
  • The prophylactic use of phenytoin during and after brain surgery and cranial irradiation is a common measure in brain tumor therapy. Phenytoin has been associated with variety of adverse skin reactions including urticaria, erythroderma, erythema multiforme (EM), Stevens-Johnson syndrome, and toxic epidermal necrolysis. EM associated with phenytoin and cranial radiation therapy (EMPACT) is a rare specific entity among patients with brain tumors receiving radiation therapy while on prophylactic anti-convulsive therapy. Herein we report a 41-year-old female patient with left temporal glial tumor who underwent surgery and then received whole brain radiation therapy and chemotherapy. After 24 days of continous prophylactic phenytoin therapy the patient developed minor skin reactions and 2 days later the patient returned with generalized erythamatous and itchy maculopapuler rash involving neck, chest, face, trunk, extremities. There was significant periorbital and perioral edema. Painful mucosal lesions consisting of oral and platal erosions also occurred and prevented oral intake significantly. Phenytoin was discontinued gradually. Systemic admistration of corticosteroids combined with topical usage of steroids for oral lesions resulted in complete resolution of eruptions in 3 weeks. All cutaneous lesions in patients with phenytoin usage with the radiotherapy must be evoluated with suspicion for EM.

Radiation Therapy of Suprasellar Germ Cell Tumors (뇌하수체상부 배아세포종의 방사선치료 성적)

  • Park Woo Yoon;Choi Doo Ho;Choi Eun Kyung;Kim Il Han;Ha Sung Whan;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.6 no.2
    • /
    • pp.169-176
    • /
    • 1988
  • A retrospective study was performed on 15 patients with suprasellar germ cell tumors treated by megavoltage external beam irradiation between Feb. 1979 and Dec. 1985. Follow-up period of survivors was 30 to 91 months. Histologic diagnosis was obtained before radiation therapy in 10patients (9 germinomas and 1 mixed). Five patients were treated without histologic verification. In 9 patients with biopsy-proven germinomas radiation therapy was delivered to the craniospinal axis in 6, to the whole brain in 3. In 5 patients with mixed germ cell tumor or elevated tumor marker, irradiation was delievered to the craniospinal axis in 2, to the whole brain in 2, and to the primary site only in 1. Total doses ranged from 5,000 to 5,500 cGy to the primary site, 3,000 to 4,400 cGy to the whole brain, and 1,300 to 3,000 cGy to the spine. In these 14, local tumor was controlled and primary or spinal failure was not observed. One patient without elevated tumor marker was treated to the whole brain. The tumor was not controlled and he had spinal recurrence. Overall survival and disease-free survival rates were $86\%$ at 5 year. It is proven that radiation therapy is an effective treatment for suprasellar germ cell tumors. The neuroendocrinologic presentation, tumor marker status, early response to radiation measured on CT seem to be useful means for selecting patients for radiation therapy when tissue diagnosis is not available.

  • PDF

The evaluation of lens absorbed dose according to the Optimold for whole brain radiation therapy (전뇌 방사선치료 시 Optimold에 따른 수정체의 흡수선량 평가)

  • Yang, Yong Mo;Park, Byoung Suk;Ahn, Jong Ho;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.77-81
    • /
    • 2014
  • Purpose : In the current whole brain Radiation Therapy, Optimold was used to immobilize the head. However, skin dose was increased about 22% due to the scattering radiation by the Optimold. Since the minimum dose causing cataracts was 2 Gy, it could be seen that the effects were large especially on the lens. Therefore, in the whole brain Radiation Therapy, it was to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part. Materials and Methods : In order to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part, the Optimold mask was made ??up to 5mm bolus on the part of the eye lens in the human model phantom (Anderson Rando Phantom, USA). In the practice treatment, to measure the lens dose, the simulation therapy was processed by placing the GafChromic EBT3 film under bolus, and after the treatment plan was set up through the treatment planning system (Pinnacle, PHILIPS, USA), the treatments were measured repeatedly three times in the same way. After removing the Optimold mask in the eyeball part, it was measured in the same way as above. After scanning the film and measuring the dose by using the Digital Flatbed Scanner (Expression 10000XL, EPSON, USA), the doses were compared and evaluated according to the presence of Optimold mask in the eyeball part. Results : When there was the Optimold mask in the eyeball part, it was measured at $10.2cGy{\pm}1.5$ in the simulation therapy, and at $24.8cGy{\pm}2.7$ in the treatment, and when the Optimold mask was removed in the eye part, it was measured at $12.9cGy{\pm}2.2$ in the simulation therapy, and at $17.6cGy{\pm}1.5$ in the treatment. Conclusion : In case of removing the Optimold mask in the eyeball part, the dose was increased approximately 3 cGy in the simulation therapy and was reduced approximately 7 cGy in the treatment in comparison to the case that the Optimold mask was not removed. During the whole treatment, since the lens absorbed dose was reduced about 27%, the chance to cause cataracts and side effects was considered to be reduced due to decrease of the absorbed dose to the eye lens which had the high sensitivity on the radiation.