• 제목/요약/키워드: White voltage

검색결과 165건 처리시간 0.024초

New ETL 층에 의한 저전압 구동 백색 발광 OLED (Low Voltage Driving White OLED with New Electron Transport Layer)

  • 문대규
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.252-256
    • /
    • 2009
  • We have developed low driving voltage white organic light emitting diode with a new electron transport material, triphenylphosphine oxide ($Ph_{3}PO$). The white light emission was realized with a rubrene yellow dopant and blue-emitting DPVBi layer. The new electron transport layer results in a very high current density at low voltage, resulting in a reduction of driving voltage. The device with a new electron transport layer shows a brightness of $1150\;cd/m^2$ at a low driving voltage of 4.3 V.

백화현상이 나타난 고압전동기 고정자권선의 절연특성 연구 (A Study on Insulation Property of White Powder Found on High Voltage Motor Stator Winding)

  • 공태식;김희동;이상길;김경열;주영호
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1627-1631
    • /
    • 2011
  • During a routine inspection of a large pump motor at power plant, white powder was found on the surface of the stator end windings. Visual inspection and high voltage insulation diagnosis was performed to determine whether this motor is available. The purpose of this paper is to understand the insulation properties of white powder found on high voltage stator and to know prevention of insulation weakness.

발광층에 2파장 재료를 갖는 백색 유기발광소자의 특성분석 (The Characteristic Analysis of White Organic Light Emitting Diodes with Two-wavelength Materials at Emitting Layer)

  • 강명구;심주용;오환술
    • 전자공학회논문지 IE
    • /
    • 제45권1호
    • /
    • pp.1-6
    • /
    • 2008
  • 본 연구에서는 발광층에 2 파장 재료를 갖는 백색 유기발광소자를 진공증착법을 사용하여 청색 발광재료인 NPB와 황색 발광재료인 Rubrene을 사용하여 제작하였다. 제작된 소자는 ITO/NPB$(200{\AA})$NPB:Rubrene$(300{\AA})$/BCP$(100{\AA})/Alq_3(100{\AA})/Al(1000{\AA})$ 구조로 하였고 Rubrene의 도핑농도는 0.75 wt%이었다. 소자의 색좌표값은 인가전압 11 V에서 x = 0.3327, y = 0.3387 로 NTSC 색좌표 순수한 백색영역(x = 0.3333, y = 0.3333)에 근접한 순수한 백색에 가까운 값을 얻었고, 이 때 최대발광파장은 560 nm이었다. 소자의 동작 개시전압은 1 V이하이고 발광 개시전압은 4 V이다. 최대 외부양자효율은 인가전압 18.5 V, 전류밑도 $369mA/cm^2$ 일 때 0.457 %를 얻었다.

계층적 분석 과정을 이용한 다중 속성의 금융통장 인식용 광학 필터의 최적 설계 (Optimal Design of Optical Filter Recognizing Financial Account with Multiple Attribute Using Analytic Hierarchy Process)

  • 유형근;이강원
    • 한국전기전자재료학회논문지
    • /
    • 제27권6호
    • /
    • pp.407-416
    • /
    • 2014
  • Five factors are identified, which affect the performance of optical filter: 1) type of optical glass, 2) existence of Fe, 3) photo pic coating type, 4) coating form, and 5) coating thickness. If we consider all the levels of five factors, there are 360 possible candidates. We determined five evaluation criteria, which can be used to evaluate possible candidates. For the performance measures we selected white-state avearge voltage, black-state average voltage, and black-state error rate. And we added economic criterion and quality and maintenance criterion. Through the two-step statistical analysis of white-state avearge voltage, black-state average voltage, and black-state error rates, we selected final four candidates. Based on the five criteria we finally determined optimal optical filter using AHP.

White OLEDs의 전기 및 광학적 특성 평가 (Optical and electrical characteristics of White OLEDs)

  • 황선필;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.25-26
    • /
    • 2008
  • In this paper, the white organic light-emitting diode(OLED)was fabricated using the DPVBi of blue emitting material and a rubrene of orange color of fluorescent dye by vacuum evaporation processes. The device structure of OLED was Glass/ITO/2T-NATA(15nm)/NPB(3nm)/DPVBi(3nm)/DPVBi rubrene[2%](10nm)/DPVBi(25nm)/$Alq_3$ or New-ETL(60nm) /LiF(0.5nm)/ Al(100nm). The device with the $Alq_3$, layer shows orange color, and the luminance of 1000cd/$m^2$ at an applied voltage of 10.4V. On the other hand, the New-En layer results in white color, CIE coordinates of (0.327, 0.323), and the lowered driving voltage of 5V for achieving the same luminance value.

  • PDF

High Performance Tandem OLEDs for Large Area Full Color AM Displays and Lighting Applications

  • Hatwar, T.K.;Spindler, J.P.;Slyke, S.A. Van
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1577-1582
    • /
    • 2006
  • Tandem OLED structures formed by connecting two or more low-voltage electroluminescent units (stacks) are effective for achieving high efficiency at low current density as well as long operational lifetime. We have fabricated white emitting tandem structures with two or three low-voltage white-emitting stacks using transparent organic "PN"-type connectors. Three- stack white tandem structures with efficiency greater than 24 cd/A at D65 and operational stability of about 110,000 h. (extrapolated) at $1000\;cd/m^2$ have been demonstrated. With a stacked structure, the power consumption for displays using an RGBW format can be reduced by 25% compared to previously described formulations. We have also fabricated advanced white tandem structures where the color gamut (NTSC x,y ratio) has been improved to greater than 70% using standard color filters. The white OLEDs can also be used to increase the colorrendering index CRI (>80%), an important consideration for solid-state lighting.

  • PDF

다층구조 배색 유기발전소자의 제작 및 특성 분석에 관한 연구 (A Study on the Fabrication and Characteristic Analysis of Multiheterostructure White Organic Light Emitting Device)

  • 노병규;강명구;오환술
    • 한국전기전자재료학회논문지
    • /
    • 제15권5호
    • /
    • pp.429-434
    • /
    • 2002
  • In this paper, multiheterostructure white organic light-emitting device was fabricated by vacuum evaporation. The structure of white organic light-emitting device is ITO/CuPc/TPD/DPBi:DPA/$Alq_3/Alq_3$:DCJTB/BCT/$Alq_3$/Ca/Al. Three primary colors are implemented with DPVBi, Alq$_3$and DCJTB. The maximum EL wavelength of the fabricated white organic light-emitting device is 647nm. And the CIE coordinate is (0.33, 0.33) at 13 V. In the fabrication of white organic light-emitting devices with DCJTB, $Alq_3$, DPVBi, the EL spectrum has two peaks at 492nm, 647nm. Two peaks appeared because the blue light is combined with green light. The maximum wavelength of red light is not changed with applied voltage. After voltage applied, for the first time, the electrons met the holes in the red emission layer and emitted red light. And then the electrons moved to the green emission layer, and blue emission layer continuously. Finally, when all of the emission layer activated, the white light is emitted.

Enhancing Lifetime of White OLED Device by Minimizing Operating Voltage Increase

  • Lee, Sung-Soo;Choi, Jun-Ho;Ha, Jae-Kook;Lee, Sang-Pil;Kim, Seong-Min;Choi, Ji-Hye;Lee, Soo-Yeon;Kim, Hyo-Seok;Chu, Chang-Woong;Shin, Sung-Tae;Kim, Chi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1658-1660
    • /
    • 2007
  • We fabricate green device having unique life time characteristics of operating voltage reduction with time, ${\Delta}V_{op}$ <0. A green device needs lower voltage than initial voltage for sustaining constant current as life time goes on. It means there are two possible reasons; one is interface modification between anode and HIL due to oxygen plasma treatment and the other is bulk property modification due to combination of new green host and new green dopant. From these materials and oxygen plasma treatment, we can make white OLED device having the characteristics of low ${\Delta}V_{op}$ increasing.

  • PDF

New ETL 층에 의한 저전압 구동 백색 발광 OLED (Low voltage driving white OLED with new electron transport layer)

  • 김태용;서원규;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.100-101
    • /
    • 2008
  • We have developed low voltage driving white organic light emitting diode with new electron transport layer. The with light emission was realized with a yellow dopant, rubrene and blue-emitting DPVBi layer. The new electron transport layer results in very high current density at low voltage, causing a reduction of driving voltage. The device with new electron transport layer shows a brightness of 1000 cd/m2 at 4.3 V.

  • PDF

백색 전계 발광소자의 구현과 전기 .광학적 특성 (White Electroluminescent Device Implementation and Its Electrical and Optical Properties)

  • 양종경;김종욱;김진만;노승수;박홍용;이종찬;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.343-346
    • /
    • 2001
  • To implementation of white electroluminescnet device in this paper, two methods were tried without synthesis of new white EL phosphor. At first, ZnS:Mn,Cl was mixed with ZnS:Cu from 20 to 50 weight percents. Second, ZnS:Mn,Cl was mixed with blue dye from 0 to 1.2 weight percents. The devices for experiments were measured as following; current-voltage, emission spectrum, brightness-voltage and CIE coordinate system and frequency properties.

  • PDF