• 제목/요약/키워드: White light emitting

검색결과 425건 처리시간 0.024초

고분자/저분자 발광재료의 혼합비에 따른 유기 전계발광 소자의 에너지 전달 및 발광특성 (Energy Transfer and Emission Properties of Organic Electroluminescent Device According to Polymer/Dye Mixing Ratio)

  • 김주승;서부완;구할본;이경섭;박복기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.997-999
    • /
    • 1999
  • We fabricated white light-emitting organic electroluminescent device which have a mixed single emitting layer containing poly(N-vinylcarbazole)[PVK], tris(8-hydroxyquinoline)aluminum[Alq3] and poly(3-hexylthiophene)[P3HT] and investigated the emission properties of it. We expect to obtain a blue light from PVK, green light from Alq3 and red light from P3HT The fabricated device emits white light over 18V with slight orange light. We think that the energy transfer in a mixed layer occurred from PVK to $Alq_3$ and P3HT resulted in decreasing the blue light intensity from PVK. With mixing of N, N'-diphenyl-N, N'-(3-methylphenyl)-[1,1'-biphenyl]-4, 4'-diamine[TPD], hole transport material, to the emitting layer, the luminance intensity of device was increased 50 times than that of the device which not contain TPD. We find that the efficiency of the white light electroluminescent device can be improved by injecting electron more effectively and blue light need to improve the color purity of white light.

  • PDF

White Organic Light-emitting Diodes using the Tandem Structure Incorporating with Organic p/n Junction

  • Lee, Hyun-Koo;Kwon, Do-Sung;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • 제8권2호
    • /
    • pp.20-24
    • /
    • 2007
  • Efficient white organic light-emitting diodes are fabricated with the blue and red electroluminescent (EL) units electrically connected in a stacked tandem structure by using a transparent doped organic p/n junction. The blue and red EL units consist of the light-emitting layer of 1,4-bis(2,2-diphenyl vinyl)benzene (DPVBi) and 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j] quinolizin-8-yl)vinyl]-4H-pyran) (DCM2) doped tris(8-hydroxyquinoline) aluminum $(Alq_3)$, respectively. The organic p-n junction consists of ${\alpha}-NPD$ doped with $FeCl_3$ (15 % by weight ratio) and $Alq_3$ doped with Li (10 %). The EL spectra exhibit two peaks at 448 and 606 nm, resulting in white light-emission with the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.36, 0.24). The tandem device shows the quantum efficiency of about 2.2 % at a luminance of 100 $cd/m^2$, higher than individual blue and red EL devices.

청색 발광층에 의한 백색 OLED의 발광 특성 (Emission Properties of White Organic Light-Emitting Diodes with Blue Emitting Layer)

  • 천현동;나현석;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제26권6호
    • /
    • pp.451-456
    • /
    • 2013
  • To study emission properties of white phosphorescent organic light emitting devices (PHOLEDs), we fabricated white PHOLEDs of ITO(150 nm) / NPB(30 nm) / TcTa(10 nm) / mCP(7.5 nm) / light-emitting layer(25 nm) / UGH3(5 nm) / Bphen(50 nm) / LiF(0.5 nm) / Al(200 nm) structure. The total thickness of light-emitting layer with co-doping and blue-doping/co-doping using a host-dopant system was 25 nm and the dopant of blue and red was FIrpic and $Bt_2Ir$(acac) in UGH3 as host, respectively. The OLED characteristics were changed with position and thickness of blue doping layer and co-doping layer as light-emitting layer and the best performance seemed in structure of blue-doping(5 nm)/co-doping(20 nm) layer. The white PHOLEDs showed the maximum current density of $34.5mA/cm^2$, maximum brightness of $5,731cd/m^2$, maximum current efficiency of 34.8 cd/A, maximum power efficiency of 21.6 lm/W, maximum quantum efficiency of 15.6%, and a Commission International de L'Eclairage (CIE) coordinate of (0.367, 0.436) at $1,000cd/m^2$.

Study of White Polymer Light Emitting Diode with Blending Method

  • Shin, Byong-Wook;Lee, Sung-Youp;Lee, Eui-Wan;Lee, Hyeong-Rag
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1461-1463
    • /
    • 2007
  • In this study, we report the luminescent properties of white polymer light emitting diode (WPLED) fabricated by soluble methods with poly-fluorenebased polymers blends which emit blue and yellow light. A device structure of ITO/PEDOT:PSS/Emissive Layer (EML)/Al was employed.

  • PDF

Luminescence Properties of $Y_2SiO_5:Eu^{3+}$ as Red-Emitting Phosphor for White Light Emitting Diodes

  • Song, Y.H.;Park, W.J.;Yoon, D.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1303-1304
    • /
    • 2009
  • In order to apply to the White light emitting diodes (WLEDs), The $Y_2SiO_5:Eu^{3+}$ as red phosphor was synthesized by solid state reaction method. The highest emission of $Y_2SiO_5:Eu^{3+}$ was shown when the $Eu^{3+}$ concentration was 0.02. A single phase was observed from X-ray diffraction (XRD) analysis of synthesized samples and secondary phase wasn't found.

  • PDF

Efficient Organic White Light-Emitting Device Utilizing SAlq, A Novel Blue Light-Emitting Material

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.773-776
    • /
    • 2002
  • Efficient organic white light-emitting diodes are fabricated by doping [bis(2-methyl-8-quinolinolato) (tripheny-siloxy)aluminium (III)] (SAlq), a blue-emitting layer, with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8-yl)vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 enables to obtain a balanced white light-emission. A device with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nm)/AI shows emission peaks at 456 nm and 482 nm from SAlq and at 570 nm from DCM2. The white light-emitting device shows an external quantum efficiency of about 2.3 %, a luminous efficiency of about 2.4 lm/W, and the CIE chromaticity coordinates of (0.32, 0.37) at 100 cd/m^2. A maximum luminance of about 23,800 cd/m^2. is obtained at 15 V and the current density of 782 mA/cm^2.

  • PDF

백색 발광다이오드의 특성에 대한 황색 형광체의 영향 (Effect of Yellow Phosphor on Characteristics of White Light Emitting Diode)

  • 장호정;손창식;허재성
    • 한국표면공학회지
    • /
    • 제40권2호
    • /
    • pp.103-106
    • /
    • 2007
  • We have investigated the optical and electrical properties of surface mounted white light emitting diode (LED) chips prepared by using yellow phosphors on the blue LED chip. The yellow phosphor mixed with transparent epoxy was coated on the prepared LED chip. The optimum mixing conditions with epoxy and yellow phosphor is obtained at the mixing ratio of epoxy:yellow phosphor = 97:3 wt%. The maximum luminance and light emitting efficiency are above $80,000cd/m^2$ and 23.2 lm/W, respectively, at the bias voltage of 2.9 V. There was no distinct change in the luminance strength with changing of the yellow phosphor ratios. The current of the white LED chip is about 30 mA at 2.9 V.

신규 합성한 청색발광재료 nitro-DPVT를 사용한 백색 유기발광다이오드의 형광색소 도핑농도 및 NPB 층의 두께 변화에 따른 특성 분석 (Analysis of the Characteristics of a White OLED using the Newly Synthesized Blue Emitting Material nitro-DPVT by Varying the Doping Concentrations of Fluorescent Dye and the Thickness of the NPB Layer)

  • 전현성;조재영;오환술;윤석범
    • 한국전기전자재료학회논문지
    • /
    • 제19권4호
    • /
    • pp.379-385
    • /
    • 2006
  • A stacked white organic light-emitting diode (OLED) having a blue/orange emitting layer was fabricated by synthesizing nitro-DPVT, a new derivative of the blue-emitting material DPVBi on the market. The white-emission of the two-wavelength type was successfully obtained by using both nitro-DPVT for blue~emitting material, orange emission as a host material and Rubrene for orange emission as a guest material. The basic structure of the fabricated white OLED is glass/ITO/NPB$(200{\AA})$/nitro-DPVT$(100{\AA})$/nitro-DPVT:$Rubrene(100{\AA})/BCP(70{\AA})/Alq_3(150{\AA})/Al(600{\AA})$. To evaluate the. characteristics of the devices, firstly, we varied the doping concentrations of fluorescent dye Rubrene from 0.5 % to 0.8 % to 1.3 % to 1.5 % to 3.0 % by weight. A nearly pure white-emission was obtained in CIE coordinates of (0.3259, 0.3395) when the doping concentration of Rubrene was 1.3 % at an applied voltage of 18 V. Secondly, we varied the thickness of the NPB layer from $150{\AA}\;to\;200{\AA}\;to\;250{\AA}\;to\;300{\AA}$ by fixing doping with of Rubrene at 1.3 %. A nearly pure white-emission was also obtained in CIE coordinates of (0.3304, 0.3473) when the NPB layer was $250-{\AA}$ thick at an applied voltage of 16 V. The two devices started to operate at 4 V and to emit light at 4.5 V. The external quantum efficiency was above 0.4 % when almost all of the current was injected.

온실에 발생하는 담배가루이 성충에 대한 LED 트랩 방제효과 (Efficiency of LED Trap on Controlling Tobacco Whitefly, Bemisia tabaci Adults in Greenhouse)

  • 전주현;이상계;이회선
    • Journal of Applied Biological Chemistry
    • /
    • 제57권3호
    • /
    • pp.243-245
    • /
    • 2014
  • 온실에 발생하는 담배가루이 성충에 대한 LED 트랩의 시설재배지내의 이용 가능성을 평가하기 위해 white LED (450-625 nm) 및 yellow LED (590 nm) 트랩과 광원이 장착되지 않은 트랩을 이용하여 유인활성을 비교하였다. 광원별 일일 포획 밀도 변화는 yellow LED 트랩에서 가장 높은 유인활성을 나타내었으며, white LED 트랩 또한 유사한 개체수가 포획되었다. 그러나 대조구로 사용된 광원이 설치되지 않은 트랩의 경우 광원이 설치된 트랩보다 적은 개체수가 포획되었다. 이러한 결과를 바탕으로 white LED 및 yellow LED 트랩이 시설재배지내에서의 친환경적 해충방제법으로의 가능성을 보여주었다.

Micro Lens Array Film을 이용한 백색 OLED의 발광 특성 (Emission Characteristics of White Organic Light-Emitting Diodes Using Micro Lens Array Film)

  • 천현동;나현석;양재웅;주성후
    • 한국표면공학회지
    • /
    • 제46권2호
    • /
    • pp.93-97
    • /
    • 2013
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with co-doping and blue/co-doping emitting layer (EML) structures were fabricated using a host-dopant system. The total thickness of light-emitting layer was 25 nm and the dopant of blue and red was FIrpic and $Bt_2Ir(acac)$ in UGH3, respectively. In case of co-doping structure, applying micro lens array film showed efficiency improvement from the current efficiency 78.5 cd/A and power efficiency 40.4 lm/W to the current efficiency 131.1 cd/A and power efficiency 65 lm/W and blue / co-doping structure showed efficiency improvement from the current efficiency 43.8 cd/A and power efficiency 22 lm/W to the current efficiency 69 cd/A and power efficiency 32 lm/W.