• Title/Summary/Keyword: White button mushrooms

Search Result 14, Processing Time 0.027 seconds

Comparative Analysis of the Nutritional and Bioactive Components of White and Brown Button Mushrooms (백색양송이와 갈색양송이의 영양성분 및 생리활성 성분 비교 분석)

  • Oh, Youn-Lee;Kim, Minseek;Jang, Kab-Yeul;Oh, Min Ji;Im, Ji-Hoon;Lee, Jong-Won
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.119-126
    • /
    • 2022
  • As the importance of public health increases with the spread of infectious diseases, functionality has become a factor affecting consumers' purchase of mushrooms. Therefore, the bioactive components of button mushrooms (Agaricus bisporus), which are generally known to promote button mushroom consumption, were analyzed. White and brown button mushrooms were compared and white beech mushroom (Hypsizygus marmoreus) were used as a control. White button mushrooms had higher sugar and inorganic potassium concentrations than brown button mushrooms, whereas sodium, magnesium, and vitamin C concentrations were not significantly different between the different button mushrooms. Moreover, there was approximately twice as much ergosterol in white button mushrooms than brown button mushrooms. Brown button mushrooms had higher concentrations of 𝛽-glucan and oxalic acid than white button mushrooms, but there was no significant difference in total organic acid content between the two mushroom types. High concentrations of the essential amino acids, ergothioneine, isoleucine, and leucine and the non-essential amino acids, glycine and alanine, were observed. Concentrations of the vitamin B group and total polyphenols were also high.

Occurrence of Internal Stipe Necrosis of Cultivated Mushrooms (Agaricus bisporus) Caused by Ewingella americana in Korea

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Yun, Hyung-Sik;Cho, Weon-Dae
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.62-66
    • /
    • 2009
  • The internal stipe necrosis of cultivated mushrooms (Agaricus bisporus) is caused by the bacterium Ewingella americana, a species of the Enterobacteriaceae. Recently, Ewingella americana was isolated from cultivated white button mushrooms in Korea evidencing symptoms of internal stipe browning. Its symptoms are visible only at harvest, and appear as a variable browning reaction in the center of the stipes. From these lesions, we isolated one bacterial strain (designated CH4). Inoculation of the bacterial isolate into mushroom sporocarps yielded the characteristic browning symptoms that were distinguishable from those of the bacterial soft rot that is well known to mushroom growers. The results of Gram stain, flagellal staining, and biochemical tests identified these isolates as E. americana. This was verified by pathogenicity, physiological and biochemical characteristics, and the results of an analysis of the 16S rRNA gene sequences and the fatty acids profile. This is the first report of the isolation of E. americana from cultivated white button mushrooms in Korea.

Analysis of trends in brown button mushroom consumption for raising awareness (갈색양송이 인지도 제고를 위한 소비 성향 분석)

  • Oh, Youn-Lee;Jang, Kab-Yeul;Oh, MinJi;Im, Ji-Hoon
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.167-170
    • /
    • 2019
  • Cultivation of brown mushrooms, rather than that of white variants is preferred by Korean mushroom farmers, as the former are resistant to diseases. However, brown mushrooms were cultivated only in selective eco-friendly agricultural farms due to lack of consumer awareness. After providing information about brown mushrooms to respondents through a 1-minute video clip, a survey was conducted on social network service (SNS) to assess recognition and preference for brown mushrooms. A food evaluation was then conducted among 200 people randomly selected from the survey respondents. Most respondents (83%) had not encountered brown button mushrooms previously, and 98% of the respondents were willing to buy these mushrooms because they were "curious about its taste" (44%). In the food evaluation, 32% of the respondents found the brown button mushrooms to be delicious, 28% reported a good flavor, and 31% described a good texture. In addition, we confirmed that 95% of respondents were interested in purchasing brown mushrooms after sampling. Therefore, in the present study, we evaluated public perception, preference, and taste of brown button mushrooms, and confirmed that availability of information on nutrition and benefits s of mushroom consumption could induce consumers to buy brown button mushrooms.

A Comprehensive Review of Tropical Milky White Mushroom (Calocybe indica P&C)

  • Subbiah, Krishnamoorthy Akkanna;Balan, Venkatesh
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.184-194
    • /
    • 2015
  • A compressive description of tropical milky white mushroom (Calocybe indica P&C var. APK2) is provided in this review. This mushroom variety was first identified in the eastern Indian state of West Bengal and can be cultivated on a wide variety of substrates, at a high temperature range ($30{\sim}38^{\circ}C$). However, no commercial cultivation was made until 1998. Krishnamoorthy 1997 rediscovered the fungus from Tamil Nadu, India and standardized the commercial production techniques for the first time in the world. This edible mushroom has a long shelf life (5~7 days) compared to other commercially available counterparts. A comprehensive and critical review on physiological and nutritional requirements viz., pH, temperature, carbon to nitrogen ratio, best carbon source, best nitrogen source, growth period, growth promoters for mycelia biomass production; substrate preparation; spawn inoculation; different supplementation and casing requirements to increase the yield of mushrooms has been outlined. Innovative and inexpensive methods developed to commercially cultivate milky white mushrooms on different lignocellulosic biomass is also described in this review. The composition profiles of milky white mushroom, its mineral contents and non-enzymatic antioxidants are provided in comparison with button mushroom (Agaricus bisporus) and oyster mushroom (Pleurotus ostreatus). Antioxidant assay results using methanol extract of milky white mushroom has been provided along with the information about the compounds that are responsible for flavor profile both in fresh and dry mushrooms. Milky white mushroom extracts are known to have anti-hyperglycemic effect and anti-lipid peroxidation effect. The advantage of growing at elevated temperature creates newer avenues to explore milky white mushroom cultivation economically around the world, especially, in humid tropical and sub-tropical zones. Because of its incomparable productivity and shelf life to any other cultivated mushrooms in the world, milky white mushroom could play an important role in satisfying the growing market demands for edible mushrooms in the near future.

Changes in the Physicochemical Properties and Functional Components of Uncooked Foods Treated with Electrolyzed Water

  • Jin, Tie-Van;Oh, Deog-Hwan;Eun, Jong-Bang
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • In this study, changes in the physicochemical properties and functional components of uncooked foods, including carrots, cabbage, shiitake (Lentinus edodes) and white button (Agaricus bisporus) mushrooms, sea mustard, and laver treated with electrolyzed water were investigated. No changes were observed in the primary compositions of any of the materials that were hot air- or freeze-dried after being treated with electrolyzed water. The lightness (L), redness (a), and yellowness (b) values of the carrots, shiitake, and laver were not affected by drying, while changes did occur in the cabbage (L-, a-, and b-values), mushrooms (a-value), and sea mustard (b-value) specimens that were hot air- or freeze-dried following the treatments with electrolyzed water. The dietary fiber contents of all the materials increased when they were hot air-dried. Vitamin C content decreased when the samples were treated with alkalic electrolyzed water. No changes occurred in the lectin, $\beta$-carotene, or total phenolic compound contents after the electrolyzed water treatments, suggesting that electrolyzed water could be used effectively as a pasteurization step for uncooked carrots, cabbage, shiitake and white button mushrooms, sea mustard, and laver.

Studies on the Pathogenic Pseudomonas Causing Bacterial Disease of Cultivated Mushroom in Korea (인공 재배버섯에 질병을 일으키는 Pseudomonas속 병원세균에 관한 연구 1. 인공 재배버섯의 부패 변성 원인세균에 대하여)

  • 김종완;김근희;강희진
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.197-210
    • /
    • 1994
  • This experiment was carried out to study the cause of degeneration and rot of cultivated mushroom. Among 597 bacterial isolates derived from the rots of Button mushroom (Agaricus bisporus), Oyster mushroom (Pleurotus ostreatus) and Oak mushroom (Lentinus edodes) collected from markets of 5 cities (Seoul, Suwon, Taegu, Pohang and Pusan) in Korea (1991~1993), 111 bacterial isolates (18.5%) were proved as pathogenic bacteria. These pathogenic bacteria causing bacterial rots of cultivated mushrooms were identified as Pseudomonas tolasii, P. agarici, and Eriwinia sp., and the main causal bacteria were P. tolaasii. P. fluorescens and Klebsiella plenticola were confirmed as saprophytic non-pathogenic bacteria. One hundred fifty nine isolates (Group No. 39) of the 486 saprophytic bacterial isolates were classified as P. fluorescens, and this species was most often found rot area of cultivated mushrooms. P. tolaasii, the causal organism of bacterial blotch, was classified into two groups; One group can be differentiated from the other by the formation of white precipitation band by white line reacting organisms of Pseudomonas Agar F media. P. tolaasii attacked the cultivated mushrooms relatively well at lower incubation temperature such as 5$^{\circ}C$, but P. agarici rarely attack at below 1$0^{\circ}C$. The temperature for the infection commercial cultivated mushrooms by P. agarici was higher than that of P. tolaasii. Optimum temperature for the infection of mushrooms by P. tolaasii and P. agarici were 2$0^{\circ}C$ and $25^{\circ}C$, respectively.

  • PDF

Identification and genetic characterization of bacterial isolates causing brown blotch on cultivated mushrooms in Korea

  • Chan-Jung Lee;Hye-Sung Park;Seong-Yeon Jo;Gi-Hong An;Ja-Yun Kim;Kang-Hyo Lee
    • Journal of Mushroom
    • /
    • v.22 no.2
    • /
    • pp.37-47
    • /
    • 2024
  • Fluorescent bacteria were isolated from sporocarps that browned into various mushrooms during survey at places of the production in Korea. We examined the pathogenicity, biodiversity, and genetic characteristics of the 19 strains identified as Pseudomonas tolaasii by sequence analysis of 16S rRNA and White Line Assay. The results emphasize the importance of rpoB gene system, fatty acid profiles, specific and sensitive PCR assays, and lipopeptide detection for the identification of P. tolaasii. As a result of these various analyses, 17 strains (CHM03~CHM19) were identified as P. tolaasii. The phylogenetic analysis based on the 16S rRNA gene showed that all strains were clustered closest to P. tolaasii lineage, two strains (CHM01, CHM02) were not identified as P. tolaasii and have completely different genetic characteristics as a result of fatty acids profile, specific and sensitive PCR, lipopetide detection, rpoB sequence and REP-PCR analysis. Pathogenicity tests showed 17 strains produce severe brown discolouration symptoms to button mushrooms and watersoaking of sporophore tissue within three days after inoculation. But two strains did not produce discolouration symptoms. Therefore, these two strains will be further investigated for correct species identification by different biological and molecular characteristics.

Breeding a new white button mushroom cultivar 'Hadam' to produce mushrooms at high temperature (고온성 백색 양송이 신품종 '하담' 육성)

  • Oh, Youn-Lee;Oh, Min Ji;Im, Ji-Hoon;Jang, Kab-Yeul
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.214-220
    • /
    • 2020
  • We undertook a breeding program to produce a white button mushroom cultivar with high temperature tolerance in preparation for climate change. The results were as follows. The strains KMCC00540, KMCC00591, and KMCC00643 were selected, and homokaryons were selected and hybrids were identified with ISSR and SSR markers, respectively. The selected hybrids were cultivated in three repetitions at a temperature of 20-25 ℃ and a humidity of 80% or higher. The variation in agricultural traits and fruiting body characteristics was least in the Abs4-2016-121 strain. This line is a hybrid of KMCC00591 and KMCC00875, and field experiments at Gyeongju and Buyeo farms found that the Abs4-2016-121 line has high fruiting body with hardness and delayed opening of pileus at high temperatures, so it was bred as a high-temperature cultivar named 'Hadam'.

Current prospects of mushroom production and industrial growth in India

  • Raman, Jegadeesh;Lee, Seul-Ki;Im, Ji-Hoon;Oh, Min-Ji;Oh, Youn-Lee;Jang, Kab-Yeul
    • Journal of Mushroom
    • /
    • v.16 no.4
    • /
    • pp.239-249
    • /
    • 2018
  • The global mushroom industry has grown rapidly in recent years in terms of beneficial effects, market value, and demand. India has a wide range of agro-climatic conditions and is largely an agricultural country with a cultivated area of about 4.37 %, generating about 620 million tons of agro waste annually. Mushroom cultivation not only helps recycle agro wastes, but also fills the nutritional gap prevalent among a large population of India. Recently, government industrial policy and creative innovation has promoted research and other endeavors aiming towards the cultivation of mushrooms. Mushroom cultivation in India was initiated in Solan, in the mid-sixties. Mushroom cultivation has been successful in temperate regions of the Himalayas, the Western Ghats, and the hills of northeast India. Recently, many unemployed people have begun to adopt mushroom cultivation as a means of self-employment. It is high time that Indian mushroom cultivators and consumers became aware of the nutritional and medicinal values of cultivated and wild species of mushrooms. The total mushroom production in India between 2010 and 2017 was approximately 0.13 million tons, accounting for a 4.3% increase in the average growth rate of mushrooms per annum. In particular, the total production of white button mushrooms is the highest, with a share of about 73% of total mushroom production. In this review article, we have analyzed the current scenario of the Indian mushroom industry and its contribution to the economic growth of the country.

Breeding a new white button mushroom cultivar 'Dodam' (백색 양송이 신품종 '도담' 육성)

  • Oh, Youn-Lee;Nam, Noun-keol;Jang, Kab-Yeul;Oh, MinJi;Im, Ji-Hoon;Lee, Seul-ki;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.16 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • The button mushroom, Agaricus bisporus, is one of the most widely cultivated mushrooms. The domestic production of cultivated mushrooms in 2016 was approximately 10,173 tons, with a total value of 59 billion won. Currently, 10 cultivars have been developed; however, Korean farmers continue to demand new cultivars of mushrooms with improved quality. To breed superior lines, KMCC00754 and KMCC00775 were selected as mother strains from the 170 collected genetic resources. The putative homokaryotic strains were 25 strains from the 120 SSIs of KMCC00754 and six strains from the 120 SSIs of KMCC00775 selected by using the AbSSR45 marker. These homokaryotic strains were crossed with each other and the crossing was confirmed by SSR analysis. Seventy-four lines were crossed into 150 lines for a 50% ratio of crossing. Abs2-2015-16 was selected as a superior line by three cultivations. A new cultivar, 'Dodam', was developed in 2017.