DOI QR코드

DOI QR Code

Identification and genetic characterization of bacterial isolates causing brown blotch on cultivated mushrooms in Korea

  • Chan-Jung Lee (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Hye-Sung Park (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Seong-Yeon Jo (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Gi-Hong An (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Ja-Yun Kim (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kang-Hyo Lee (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • Received : 2024.05.07
  • Accepted : 2024.06.24
  • Published : 2024.06.30

Abstract

Fluorescent bacteria were isolated from sporocarps that browned into various mushrooms during survey at places of the production in Korea. We examined the pathogenicity, biodiversity, and genetic characteristics of the 19 strains identified as Pseudomonas tolaasii by sequence analysis of 16S rRNA and White Line Assay. The results emphasize the importance of rpoB gene system, fatty acid profiles, specific and sensitive PCR assays, and lipopeptide detection for the identification of P. tolaasii. As a result of these various analyses, 17 strains (CHM03~CHM19) were identified as P. tolaasii. The phylogenetic analysis based on the 16S rRNA gene showed that all strains were clustered closest to P. tolaasii lineage, two strains (CHM01, CHM02) were not identified as P. tolaasii and have completely different genetic characteristics as a result of fatty acids profile, specific and sensitive PCR, lipopetide detection, rpoB sequence and REP-PCR analysis. Pathogenicity tests showed 17 strains produce severe brown discolouration symptoms to button mushrooms and watersoaking of sporophore tissue within three days after inoculation. But two strains did not produce discolouration symptoms. Therefore, these two strains will be further investigated for correct species identification by different biological and molecular characteristics.

Keywords

Acknowledgement

This study was supported by research grant from the Rural Development Administration(RDA) of Korea.

References

  1. Adekambi T, Drancourt M, Raoult D. 2009. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol. 17:37-45.
  2. Bereswell S, Bugert P, Volksch B, Ullrich M, Bender CL, Geider K. 1944. Identification and relatedness of coronatineproducing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products. Appl Environ Microbiol. 60: 2924-2930.
  3. Berti AD, Greve NJQ, Christensen H, Thomas MG. 2007. Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J Bacteriol. 189:6312-23.
  4. Borodin AM, Danilkovich AV, Allikmets RL, Rostapshov VM, Chernov IP, Azhikina TL, Monastyrskaya S, Sverdlov D. 1988. Nucleotide sequence of the rpoB gene coding for the beta-subunit of RNA polymerase in Pseudomonas putida. Doklady Biochem Biophy. 302 :1261-1265.
  5. Brodey CL, Rainey PB, Teste M, Johnstone K. 1991. Bacterial blotch disease of the cultivated mushroom is caused by an ion-channel forming lipodepsipeptide toxin. Mole Plant-Microbe Interac. 4:407-411.
  6. Butreys A. Gheysen I. 1999. Biological and molecular detection of toxic lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants. Appl Environ Microbiol. 65:1904-1909.
  7. Brosius J, Dull TJ, Sleeter D, Noller HF. 1981. Gene organisation and primary structure of a ribosomal DNA operon from Escherichia coli. J Mol Biol. 148:107-127.
  8. Chee HY, Oh SJ, Lincoln SP. 1999. Genetic diversity of Korean isolates of Pseudomonas tolaasii and WLRO(White Line Reacting Organism) using BOS-, BEP-, and ERIC-PCR. Kor J Mycol. 27:119-123.
  9. Cheung PCK. 2010. The nutritional and health benefits of mushrooms. Nutr. Bull. 35:292-299.
  10. Cutri SS, Macaulay BJ, Roberts YWP. 1984. Characteristics of pathogenic non-fluorescent (smooth) and nonpathogenic fluorescent (rough) forms of Pseudomonas tolaasii and Pseudomonas gingeri. J Appl Bacteriol. 51:291-8.
  11. Dai YC, Yang ZL, Cui BK, Yu CJ, Zhou LW. 2009. Species diversity and utilization of medicinal mushrooms and fungi in China (Review). Int. J Med Mushr. 11:287-302.
  12. De Bruijn FJ. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 58:2180-2187.
  13. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the booststrap. Evolution. 393:783-791.
  14. Gandy DG. 1968. A technique for screening bacteria causing Brown blotch of cultivated mushrooms. In: Report of the Glasshouse Crops Research Institute. pp.150-154.
  15. Geels FP, Hesen LPW, Van Griensven LJLD. 1994. Brown discoloration of mushrooms caused by Pseudomonas agarici. J Phytopathol. 140:249-59.
  16. Goor M, Vantomme R, Swings J, Gillis M, De Kersters K, Ley J. 1986. Phenotypic and genotypic diversity of Pseudomonas tolaasii and white line reacting organisms isolated from cultivated mushrooms. J Gen Microbio. 132:2249-2264.
  17. Han HS, Jhune CS, Cheong JC, Oh JA, Kong WS , Cha JS, Lee CJ. 2012. Occurrence of black rot of cultivated mushrooms (Flammulina velutipes) caused by Pseudomonas tolaasii in Korea. Eur J Plant Pathol. 133:527-535.
  18. Houdeau G, Olivier JM. 1989. Pathology of Pleurotus (oyster mushroom). Champignon. 337:10-14.
  19. Kim MH, Park SW, Kim YK. 2011. Bacteriophages of Pseudomonas tolaasii for the biological control of brown blotch disease. J Korean Soc Appl Biol Chem. 54:9-104.
  20. Kumar S, Tamura K, Nei M. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics. 5:150-163.
  21. Kwon SW, Go SJ, Cheun MS, Kang HW, Oh SJ, Chang WB, Ryu JC. 1999. Detection of Pseudomonas tolaasii causing brown blotch disease of mushroom with species-specific DNA probe. Kor J Mycol. 27:132-137.
  22. Kwon SW, Kim SH, Go SJ. 2000. PCR Assays for Detection of Pseudomonas tolaasii and Pseudomonas agarici. Mycobiology. 28:89-92.
  23. Lee HI, Jeong KS, Cha JS. 2002. PCR assays for specific and sensitive detection of Pseudomonas tolaasii, the cause of brown blotch disease of mushrooms. Letters Appl Microbiol. 35:276-280.
  24. Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ. 1995. Differentiation of genomic structure by rep-PCR fingerprinting to rapidly classify Xanthomonas campestris pv. vesicatoria. Phytopathol. 85:528-536.
  25. Svetlana MM, Biljana T, Ivana P, Milos S, Emil R. 2012. First report of Pseudomonas tolaasii on Agaricus bisporus in Serbia. Phytoparasitica, 40:299-303.
  26. Mollet C, Drancourt M, Raoult D. 1997. rpoB sequence analysis as a novel basis of bacterial dentification. Mol Microbiol. 26:1005-1011.
  27. Mortishire-Smith RJ, Nutkins JC, Packman LC. 1991. Determination of the structure of an extracellular peptide produced by the mushroom saprotroph Pseudomonas reactans. Tetrahedron. 47:3645-3654.
  28. Munsch P, Alatossava T, Marttinen N, Meyer JM, Christen R, Gardan L. 2002. Pseudomonas costantinii sp. nov., another causal agent of brown blotch disease, isolated from cultivated mushroom sporophores in Finland. Int J Syst Evol Microbiol. 52:1973-83.
  29. Nielsen TH, Christophersen C, Anthoni U, Sorensen J. 1999. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol. 86:80-90.
  30. Noval C, Seisdedos MT, Delacruz YJI. 1993. Estudio de la posible relacion entre la caida de yemas en peraly la capacidad bacteriana para formar nucleos de hielos u originar podredumbre banda. Boletin de sanidad vegetal. Plagas. 19:649-661.
  31. Olivier JM, Guillaumes J, Martin D. 1978. Study of a bacterial disease of mushroom caps. In: Proc. 4th Int Conf Plant Path Bact. pp. 903-916. INRA, Angers.
  32. Palleroni NJ. 1984. Genus I. Pseudomonas Migula 1894. In: Krieg N R, Holt J G, editors; Krieg N R, Holt J G, editors. Bergey's manual of systematic bacteriology. Vol. 1. Baltimore, Md: Williams and Wilkins.
  33. Qi Y, Patra G, Liang X, Williams LE, Rose S, Redkar RJ, DelVecchio VG. 2001. Utilization of rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. App Environ Microbiol. 67:3720-3727.
  34. Rainey FA, Janssen PH, Wild DJC, Morgan HW. 1991. Isolation and characterization of an obligately anaerobic, polysaccharolytic, extremely thermophilic member of the genus Spirochaeta. Arch Microbiol. 155:396-401.
  35. Rainey PB, Brodey CL, Johnstone K. 1992. Biology of Pseudomonas tolaasii, cause of brown blotch disease of the cultivated mushrooms. In: Adv. Plant Pathol. (Andrews, J.H. and Tommerup, I., Eds.), pp. 95-117. Academic Press.
  36. Reasoner DJ, Geldreich EE. 1985. "A new medium for the enumeration and subculture of bacteria from potable water." Appl Environ Microbiol. 49:1-7.
  37. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 4:406-425.
  38. Sajben E, Manczinger L, Nagy A, et al. Characterization of pseudomonads isolated from decaying sporocarps of oyster mushroom. Microbiol Res. 2010;166:255-267.
  39. Shadi T, Hassanzadeh N, Heydari A. 2015. Study on genetic diversity of Pseudomonas tolaasii and Pseudomonas reactans bacteria associated with mushroom brown blotch disease employing ERIC and BOX-PCR techniques. Int. J Agric Crop Sci. 2015;8: 398-405.
  40. Stainer RY, Palleroni NJ, Doudoroff M. 1966. The aerobic pseuomonads: a taxonomic study. J Gen Microbiol. 43:159.
  41. Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101, Microbial ID Inc., Newark, Del. USA.
  42. Shirata A, Sugaya K, Takasugi M, Monde K. 1995. Isolation and biological activity of toxins produced by a Japanese strain of Pseudomonas tolaasii, the pathogen of bacterial rot of cultivated Oyster mushroom. Ann Phytopathologi Soci Japan. 61:493-502.
  43. Soler-Rivas C, Joliet S, Arpin N, Olivier JM, Wichers HJ. 1999. Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiologic Rev. 23:591-614.
  44. Tanprasert P, Reed BM. 1997. Detection and identification of bacterial contaminants from strawberry runner explants. In Vitro Cell Dev Biol Plant. 33:221-226.
  45. Taparia T, Krijger M, Hodgetts J, Hendriks M, Elphinstone J. G, van der Wolf J. 2020. Six multiplex Taq ManTM-qPCR assays for quantitative diagnostics of Pseudomonas Species causative of bacterial blotch diseases of mushrooms. Front Microbiol. 11:989. doi: 10.3389/fmicb.2020.00989.
  46. Thorn G, Tsuneda A. 1996. Molecular genetic characterization of bacterial isolates causing brown blotch on cultivated mushrooms in Japan. Mycosci. 37:409-16.
  47. Tsuneda A, Suyama K, Murakami S, Ohira I. 1995. Occurrence of Pseudomonas tolaasii on fruiting bodies of Lentinula edodes formed on Quercus logs. Mycosci. 36:283-288.
  48. Young JM. 1970. Drippy gill: a bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n. sp. NZ J Agr Res. 13:977-990.
  49. Yun YB, Han JH, Kim YK. 2018. Characterization of phage-resistant strains derived from Pseudomonas tolaasii 6264, which causes brown blotch disease. J Microbiol Biotechnol. 28:2064-2070.
  50. Wells JM, Sapers GM, Fett WF, Butterfield JE, Jones JB, Bouzar H, Miller FC. 1996. Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. 'reactans' and P. 'gingeri'. Phytopathol. 86:1098-1104.
  51. Williams JG, Kubelic AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitray primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535.
  52. Wong WC, Preece TF. 1979. Identification of Pseudomonas tolaasii: the white line in agar and mushroom tissue block rapid pitting test. J App Bacterio. 47:401-407.