• Title/Summary/Keyword: Whirling characteristics

Search Result 28, Processing Time 0.023 seconds

Stability Analysis of an Asymmetric Shaft with Internal Damping (내부감쇠가 있는 축비대칭 구동축의 안정성 해석)

  • Shin, Eung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • This paper intends to provide the whirling characteristics of an asymmetric rotor-shaft system with a non-ideal DC motor. The equations of motion have been derived in terms of system parameters such as the internal/external damping, the asymmetry and the motor voltage. By imposing the conditions that the motor input power should be balanced by the dissipated power, steadystate whirling characteristics are obtained such as the whirling amplitude, the whirling frequency and the stability diagrams. Results show that the whirling stability is affected by the internal/external damping and the asymmetry as well as the motor voltage. Also, the whirling amplitude at the steadystate is increased and the motor speed is lowered as the internal damping becomes higher or the external damping is reduced. In addition, the asymmetry causes the variation of the whirling orbit, which becomes splitted into two distinct trajectories. Finally, non-ideal characteristics of the DC motor is found to reduce the whirling motion in case of steadystate whirling with high asymmetry and high internal damping.

Heat Generation Characteristics of Whirling Spindle for Ball Screw Machining (볼스크류 가공용 선회형 스핀들의 발열 특성에 관한 연구)

  • Moon, Hong-Man;Kim, Sang-Won;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.44-51
    • /
    • 2020
  • We studied the heating characteristics of a whirling spindle. This spindle is an important component of a whirling machine for turning a ball screw shaft. In the manufacturing process for a conventional ball screw shaft, a single tool is used to form a spiral in a lathe machine tool. Thereafter, a high-frequency heat treatment process is performed. Recently, a whirling-type cutting method has emerged. This method can perform hard turning in the rotating direction of the spiral portion of the ball screw shaft by rotating and mounting multiple tools. The whirling method can be applied to the heat-treated material. In this study, an experimental apparatus was constructed to analyze the whirling spindle. The experiment proceeded in four steps. The rotating speed of the whirling spindle was set to ISO random and sequential rising conditions. Cooling and non-cooling modes in the cooling jacket were tested. As a result of the above experiment, the heating characteristics of the whirling spindle were derived.

Whirling Vibration Analysis & Measurement of the propulsion shafting system of l000P Ro-Ro Ferry (1000인승 대형 Ro-Ro Ferry 의 축계 whirling 진동 해석 및 계측/분석)

  • Kwon, Hyuk;Han, Sung-Yong;Um, Jae-Kwang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.143-148
    • /
    • 2001
  • Relatively high rotating speed propulsion shafting system of the large Ro-Ro Ferry has a greate risk of the resonance of the whirling vibration within the operating speed range. Therefore, it is necessary to control the whirling vibration characteristics of the shafting system in the initial design stage so as not to be resonant with the blade number order excitation in the normal operating speed range. The results of the whirling vibration analysis for l000P Ro-Ro Ferry with SHI's in-house program and the measured results during the sea trial are introduced. Additionally the outline of the program and the calculation method of the major properties are presented.

  • PDF

A Study on the Cutting Force of Side Milling Cutter and Whirling Tool in Worm Screw Machining (Worm 절삭 가공 시 Side Milling Cutter 와 Whirling Tool 의 절삭력에 관한 연구)

  • Gwon T.W.;Kim C.H.;Kang D.B.;Lee M.H.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1879-1882
    • /
    • 2005
  • Due to increase of demands on safety and convenience for automotive vehicle, the use of DC motor, such as power window, seat adjusting, pedal adjusting, sunroof, electric shift motor and so on, is increasing rapidly in the whole world. Worm gear is an important part to transmit torque to another gear in gear mechanism of automotive DC motor. But with current forming process, it has some problems in manufacturing and the quality. Also, the characteristics of automotive parts such as price and mass-production limit the quality improvement. Recently several methods are used in order to reduce a worm screw machining time and to maintain precision. In this paper, we introduce whirling tool machining and side milling cutter machining as effective manufacturing method of worm screw and study on the cutting force of side milling cutter and whirling tool in worm screw machining.

  • PDF

Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects

  • Ouakad, Hassen M.;Sedighi, Hamid M.;Al-Qahtani, Hussain M.
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.245-254
    • /
    • 2020
  • This work examines the fundamental vibrational characteristics of a spinning CNT-based nano-rotor assuming a nonlocal elasticity Euler-Bernoulli beam theory. The rotary inertia, gyroscopic, and rotor mass unbalance effects are all taken into consideration in the beam model. Assuming a nonlocal theory, two coupled 6th-order partial differential equations governing the vibration of the rotating SWCNT are first derived. In order to acquire the natural frequencies and dynamic response of the nano-rotor system, the nonlinear equations of motion are numerically solved. The nano-rotor system frequency spectrum is shown to exhibit two distinct frequencies: one positive and one negative. The positive frequency is known as to represent the forward whirling mode, whereas the negative characterizes the backward mode. First, the results obtained within the framework of this numerical study are compared with few existing data (i.e., molecular dynamics) and showed an overall acceptable agreement. Then, a thorough and detailed parametric study is carried out to study the effect of several parameters on the nano-rotor frequencies such as: the nanotube radius, the input angular velocity and the small scale parameters. It is shown that the vibration characteristics of a spinning SWCNT are significantly influenced when these parameters are changed.

Study of the Dynamic Characteristics of a High-Pressure Labyrinth Seal Considering Rotor Whirling (회전체 Whirl 운동을 고려한 고압용 래비린스 씰의 동적 특성에 관한 연구)

  • Kim, Chae Sil;Lee, Kyung Jin;Shin, Min Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.713-718
    • /
    • 2015
  • This article describes the calculation procedure for the dynamic characteristics of a high-pressure labyrinth seal wherein the friction force and rotor whirling force are considered; SFCP, the commercial code developed by Lee and two colleagues, is used in the procedure. The simulation results were reviewed in comparison to those of the experiments provided by Benckert; additionally, the SFCP simulation results were verified using the CFD analysis presented by Toshio Hirano. This calculation procedure may therefore be applied to the dynamic characteristics of the labyrinth seals of high-pressure turbo machinery.

Effect of friction and eccentricity on rebbing phenomenon (회전마멸현상에서의 마찰과 편심의 영향)

  • 최연선;김준모;정호권
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.819-825
    • /
    • 1996
  • Nonlinear dynamic characteristics of rubbing phenomenon in rotor dynamics are investigated experimentally and numerically. Rubbing phenomenon occurs when rotor contacts with stator during whirling and causes the large amplitude of vibration, high whirl frequencies, and possibly catastrophic failure. Rubbing has various types of forward whirl, backward rolling, backward slipping, and partial rub depending on the system parameters of rotating machinery and running speed. Experiments are performed for forward whirl and backward whirl. And numerical analysis are conducted to explain the changes between backward rolling and backward slipping. Experimental and numerical results show that the types of whirling motion depends on the friction coefficient between rotor and stator and the eccentricity of rotor.

  • PDF

Rotordynamic Analysis of Labyrinth Seal with Swirl Brake (스월 브레이크가 장착된 래버린스 씰의 동특성 해석)

  • Lee, Jeongin;Suh, Junho
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • In this research, the rotordynamic characteristics of the labyrinth seal with and without swirl brake were predicted using the computational fluid dynamic (CFD) model. Based on previous studies, a simple swirl brake consisting of square vanes without stagger angle is designed and placed in front of the seal inlet. The rotating frame of reference is utilized to consider the whirling motion of the rotor in the steady-state analysis since the whirling motion is transient behavior in nature. CFD analysis was performed in the range of -1 to 1 pre-swirl ratio for a given seal and swirl brake design and operating conditions. The CFD analysis result shows that the swirl brake effectively reduces the pre-swirl since the circumferential fluid velocity of labyrinth seal with swirl brake was lower than that without swirl brake. The cross-coupled stiffness coefficient, which is greatly affected by the circumferential fluid velocity, increased with an increasing pre-swirl ratio in a seal without a swirl brake but showed a low value in a seal with a swirl brake. The change in the damping coefficient was relatively small. The effective damping coefficient of the labyrinth seal with swirl brake was generally constant and showed a higher value than the labyrinth seal without swirl brake.