• 제목/요약/키워드: Whey protein concentration

검색결과 58건 처리시간 0.027초

유기농 유청 단백 가수분해의 최적 효소 선발 (Optimal Enzyme Selection for Organic Whey Protein Hydrolysis)

  • 서형주;신중철;김재환;장주현;한성희
    • 한국식품영양학회지
    • /
    • 제30권6호
    • /
    • pp.1359-1363
    • /
    • 2017
  • The purpose of this study was that the optimal hydrolysis conditions of endo- and exo-type enzymes were selected to utilize organic cheese byproducts. Optimal substrate concentration and optimum enzyme ratio were measured by using 4 kinds of endo-type enzymes (alcalase, neutrase, protamex, and foodpro alkaline protease) and two exo-type enzymes (flavourzyme and prozyme 2000P) for whey protein hydrolysis were analyzed using liquid chromatography. As a result, the optimal endo-type enzyme through the first enzyme reaction was selected as alcalse, and as a result of the secondary enzyme reaction, flavourzme was selected as the Exo type enzyme. The concentration of whey protein substrate for optimal primary and secondary enzyme reactions was 10%. In addition, the optimum ratio of enzyme was 0.5% of alcalase and 0.2% of flavourzyme, which showed low molecular weight chromatography pattern compared to 2% of alcalase and 1% of flavourzyme hydrolyzate. Therefore, hydrolyzing the endo-type enzyme alcalase at a concentration of 0.5% for 10 hours and then hydrolyzing the exo-type enzyme flavouryme at a concentration of 0.2% for 4 hours was considered to be the optimum condition.

Effects of Whey Protein Injection as a Curing Solution on Chicken Breast Meat

  • Ha, Jung-Heun;Lee, Ju-Ho;Lee, Jae-Joon;Choi, Yang-Il;Lee, Hyun-Joo
    • 한국축산식품학회지
    • /
    • 제39권3호
    • /
    • pp.494-502
    • /
    • 2019
  • The quality characteristics and storage stability of chicken breast meat (CBM) was investigated following the injection of whey protein (WP) as a curing ingredient. The moisture content of CBM decreased with increasing concentration of WP. The highest concentration of WP (7%) resulted in the lowest moisture and fat content and the highest protein content of CBM. Injection of WP elevated the pH and water holding capacity (WHC) of CBM. The cooking loss of CBM was significantly decreased with WP injections of 3% and higher. All WP injections increased the $L^*$ of the CBM but decreased the $a^*$ and $b^*$. WP injection increased the springiness, cohesiveness, and chewiness and decreased the hardness of the CBM. WP injection increased 2-thiobarbituric acid reactive substances (TBARS) after 3 and 7 days of storage. The volatile basic nitrogen (VBN) content of the CBM increased with increased concentrations of WP. The total microbial count (TMC) of CBM injected with WP was higher initially and after 3 days of storage. Our results showed WP injection improved the WHC of CBM but decreased the storage stability by increasing TBARS, VBN and TMC.

12주저항트레이닝 운동시 천연단백질과 분리유청단백질 섭취의 차이가 근육량 및 신체구성에 미치는 영향 (The Effect of the Difference Between Natural Protein and Whey Protein Intake During the 12 weeks of Resistance Training Exercise on Changes in Solt Lean Mass and Body Composltion)

  • 박원덕
    • 수산해양교육연구
    • /
    • 제28권5호
    • /
    • pp.1220-1230
    • /
    • 2016
  • The purpose of this study is to investigate the effect of 20s university student bodybuilders' protein intake differences with resistant exercise(weight training) by 12 weeks on solt lean mass and body composltion. Natural protein(Chicken breast meat) intake group and Whey protein isolates(WPI) intake group are the experimental groups. Conventional meal intake group is the control group. This study proposes a efficient protein diet for weight training. The results were as follows. In the experimental group(natural protein intake), muscle mass and lean body mass was significantly increased, but body fat percentage was significantly decreased. In the experimental group(WPI intake), muscle mass and lean body mass was significantly increased, but body fat percentage was significantly decreased. In the control group(conventional meal intake), muscle mass and lean body mass was insignificantly increased, but body fat percentage was insignificantly decreased. In addition, there was not a significant difference among intake groups, and also not a differentiated effect between natural protein and WPI intake. In conclusion, natural protein and WPI made muscle mass and lean body mass rise, body fat percentage reduced effectively. Only WPI intake(without natural protein intake) was the efficient mean to increase muscle mass and lean body mass, and to decrease body fat percentage.

유용성 물질의 분리를 위한 두부순물의 한외여과 (Ultrafiltration of Soybean Curd Whey for the Separation of Functional Components)

  • 서성희;황인경
    • 한국식품조리과학회지
    • /
    • 제13권4호
    • /
    • pp.507-513
    • /
    • 1997
  • 두부순물에 함유되어 있는 유용성 물질을 분리·농축하고자 한외여과법을 행하고 그 효율성을 분석하였다. 재생섬유소막과 polysulphone막 모두 pH가 증가할수록 막투과 속도가 감소하였고, pH 3.5에서 한외여과 효율이 가장 높게 나타났다. EDTA를 0.01 M 처리한 두부순물의 경우, 처리하지 않은 것보다 오히려 막투과 속도가 감소하였다. 또한 pH가 증가할수록 두부순물의 이온성 칼슘의 농도가 감소하여 이온성 칼슘의 농도 또한 막투과 속도에 영향을 준다고 생각되었다. Polysulphone막의 경우 용적농축비가 10일 때 COD의 막 제거계수가 79.25%, 단백질 막 제거계수가 98.42%로 나타나 정화효과와 농축액으로의 단백질 농축효과가 컸으며 , 재생섬유소막은 단백질의 막제거 계수는 polysulphone막보다 낮았으나 당을 여과액쪽으로 회수하고자 할 때 더 효율적인 것으로 나타났다. 올리고당을 여과액쪽으로 회수하고자 할 때 라피노오스와 스타키오스의 농도를 상대적으로 높이기 위해서 polysulphone막보다 재생섬유소막이 더 적당하며, 용적농축비는 4배 정도가 적합한 것으로 나타났다.

  • PDF

페수로부터 연속한외여과법에 의한 단밸질의 분리, 회수에 관한 연구 -II. 폐수 시액의 물성과 삼투압, 경막물질 이동계수 및 겔농도와의 관계- (A Study on Recovery of Protein Concentrated from Cheese Whey Solution by the Continuous Ultrafiltration -II. Relationship among the osmotic pressure, the coefficient of mass transfer, gel concentration of waste cheese whey-)

  • 공재열
    • 한국식품영양과학회지
    • /
    • 제17권4호
    • /
    • pp.371-375
    • /
    • 1988
  • $32^{\circ}C$에서 분획분자량 100,000인 막을 사용하여 Cheese whey를 농축시켰을 때 그 농축한계는 38%로 이는 보통의 폐액중의 whey농도의 약 6배의 농도에 해당한다. 겔층의 형성은 농축효과를 저하시킬 뿐만 아니라 저분자용질과 고분자용질과의 분리도 나쁘게 한다. 한외여과가 고분자 용질의 분리를 대상으로 하는 이상 겔층의 형성은 피할 수 없으므로 운전시간의 합리적인 관리가 필요하다고 생각된다. 투과유속이 큰 한외여과인 경우, 경막물질이동계수는 온도 $32^{\circ}C$에서 관내선속도의 1.1승에 비례하는 결과를 얻었으며 종래의 보고치에 비하여 관내선속도의 영향이 큰 것으로 나타났다.

  • PDF

우유에서의 알레르겐 저감화 방법 (Allergenicity Reduction of Milk)

  • 하월규
    • Journal of Dairy Science and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.27-36
    • /
    • 2008
  • This review was written to introduce updated data on the structure and function of the major milk proteins identified as allergens, the characterization of their epitopes in each allergenic milk proteins, and the reduction of milk protein allergenicity. Most mammalian milk protein, even protein present at low concentration, are potential allergens. Epitopes identified in milk proteins are both conformational(structured epitope) and sequential epitopes(linear epitope), throughout the protein molecules. Epitopes on casein and whey proteins are reported to be sequential epitope and conformational epitopes, respectively. Conformational epitopes on whey protein are changed into sequential epitope by heat denaturation during heat treatment. Several methods have been proposed to reduce allergenicity of milk proteins. Most ideal and acceptable method to make hypoallergenic milk or formula, so far, is the hydrolysis of allergenic milk proteins by enzymes that has substrate specificity, such as pepsin, trypsin, or chymotrypsin. Commercial formulas based on milk protein hydrolysate are available for therapeutic purpose, hypoantigenic formula for infants from families with a history of milk allergy and hypoallergenic formula for infants with existing allergic symptoms.

  • PDF

Separation of Calcium-binding Protein Derived from Enzymatic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Shin, H.S.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권5호
    • /
    • pp.712-718
    • /
    • 2004
  • This study was carried out to separate the calcium-binding protein derived from enzymatic hydrolysates of cheese whey protein. CWPs (cheese whey protein) heated for 10 min at $100^{\circ}C$ were hydrolyzed by trypsin, papain W-40, protease S, neutrase 1.5 and pepsin, and then properties of hydrolysates, separation of calcium-binding protein and analysis of calcium-binding ability were investigated. The DH (degree of hydrolysis) and NPN (non protein nitrogen) of heated-CWP hydrolysates by commercial enzymes were higher in trypsin than those of other commercial enzymes. In the result of SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis), $\beta$-LG and $\alpha$-LA in trypsin hydrolysates were almost eliminated and the molecular weight of peptides derived from trypsin hydrolysates were smaller than 7 kDa. In the RP-HPLC (reverse phase HPLC) analysis, $\alpha$-LA was mostly eliminated, but $\beta$-LG was not affected by heat treatment and the RP-HPLC patterns of trypsin hydrolysates were similar to those of SDS-PAGE. In ion exchange chromatography, trypsin hydrolysates were shown to peak from 0.25 M NaCl and 0.5 M NaCl, and calcium-binding ability is associated with the large peak, which was eluted at a 0.25 M NaCl gradient concentration. Based on the results of this experiment, heated-CWP hydrolysates by trypsin were shown to have calcium-binding ability.

Physicochemical Characterization and Potential Prebiotic Effect of Whey Protein Isolate/Inulin Nano Complex

  • Ha, Ho-Kyung;Jeon, Na-Eun;Kim, Jin Wook;Han, Kyoung-Sik;Yun, Sung Seob;Lee, Mee-Ryung;Lee, Won-Jae
    • 한국축산식품학회지
    • /
    • 제36권2호
    • /
    • pp.267-274
    • /
    • 2016
  • The purposes of this study were to investigate the impacts of concentration levels of whey protein isolate (WPI) and inulin on the formation and physicochemical properties of WPI/inulin nano complexes and to evaluate their potential prebiotic effects. WPI/inulin nano complexes were produced using the internal gelation method. Transmission electron microscopy (TEM) and particle size analyzer were used to assess the morphological and physicochemical characterizations of nano complexes, respectively. The encapsulation efficiency of resveratrol in nano complexes was studied using HPLC while the potential prebiotic effects were investigated by measuring the viability of probiotics. In TEM micrographs, the globular forms of nano complexes in the range of 10 and 100 nm were successfully manufactured. An increase in WPI concentration level from 1 to 3% (w/v) resulted in a significant (p<0.05) decrease in the size of nano complexs while inulin concentration level did not affect the size of nano complexes. The polydispersity index of nano complexes was below 0.3 in all cases while the zeta-potential values in the range of -2 and -12 mV were observed. The encapsulation efficiency of resveratrol was significantly (p<0.05) increased as WPI and inulin concentration levels were increased from 1 to 3% (w/v). During incubation at 37℃ for 24 h, WPI/inulin nano complexes exhibited similar viability of probiotics with free inulin and had significantly (p<0.05) higher viability than negative control. In conclusions, WPI and inulin concentration levels were key factors affecting the physicochemical properties of WPI/inulin nano complexes and had potential prebiotic effect.

분리대두단백과 유청분말을 사용한 대두 요구르트의 제조에 관한 연구 (Preparation of Soy Yogust Using Isolated Soybean Protein and Whey Powder)

  • 장재권;윤승헌
    • 한국식품영양과학회지
    • /
    • 제26권6호
    • /
    • pp.1128-1134
    • /
    • 1997
  • Lactobacillus helveticus was inoculated to the fermentation liquid containing skin milk powder(SMT) plus soymilk, SMP plus isolated soybean protein(ISP), SMP plus ISP plus whey powder(WP) to increase the nutritional and economic value of commercial soy yogurt. The yogurt fermented with soymilk and SMP showed the lower acid production than of SMP and had significant beany flavor in the product. The yogurt prepared with ISP and SMP showed the higher cell number and lower acid production than that of SMP. Also, the partial substitution of SMP with ISP over 6%(w/w) produced less acceptable product due to gel production. The yogurt prepared by the partial substitution of SMP with ISP, WP and SMP showed the higher cell number and lower acid production than that of SMP and not bring about gel formation unlike the case of ISP. Sensory properties of yogurt substituted SMP with ISP and WP(38:62 mixture) below 4% were not significantly different from that of SMP and the sample containing the mixture over 6% and 0.067% artificial flavor showed lower sensory score due to beany taste than that of SMP. But increase of yogurt flavor up to 0.1% resulted in significantly high score in organoleptic acceptability. The separation of water occured in yogurt prepared by the combined mixture of ISP, WP and SMP, and this problem could be resolved by addition of Na-alginate and PGA at the concentration of 0.1%(w/w).

  • PDF

Preparation of Hypoallergenic Whey Protein Hydrolysate by a Mixture of Alcalase and Prozyme and Evaluation of Its Digestibility and Immunoregulatory Properties

  • Jiyeon Yang;Se Kyung Lee;Young Suk Kim;Hyung Joo Suh;Yejin Ahn
    • 한국축산식품학회지
    • /
    • 제43권4호
    • /
    • pp.594-611
    • /
    • 2023
  • Whey protein (WP) has nutritional value, but the presence of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) cause allergic reactions. In this study, hypoallergenic whey protein hydrolyate (HWPH) was prepared by decomposing β-LG and α-LA of WP using exo- and endo-type proteases. The enzyme mixing ratio and reaction conditions were optimized using response surface methodology (RSM). Degradation of α-LA and β-LG was confirmed through gel electrophoresis, and digestion, and absorption rate, and immunostimulatory response were measured using in vitro and in vivo systems. Through RSM analysis, the optimal hydrolysis conditions for degradation of α-LA and β-LG included a 1:1 mixture of Alcalase and Prozyme reacted for 10 h at a 1.0% enzyme concentration relative to substrate. The molecular weight of HWPH was <5 kDa, and leucine was the prominent free amino acid. Both in vitro and in vivo tests showed that digestibility and intestinal permeability were higher in HWPH than in WP. In BALB/c mice, as compared to WP, HWPH reduced allergic reactions by inducing elevated Type 1/Type 2 helper T cell ratio in the blood, splenocytes, and small intestine. Thus, HWPH may be utilized in a variety of low allergenicity products intended for infants, adults, and the elderly.