• Title/Summary/Keyword: Wheelchair user

Search Result 88, Processing Time 0.032 seconds

The Research of People with Disabilities Satisfaction about Loading Wheelchair while Boarding on Vehicle (장애인의 차량 탑승 시 휠체어 수납에 대한 만족도 조사)

  • Rhee, K.M.;Lee, J.H.;Lee, S.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, when wheelchair user get into the vehicle, we have thorough grasp of the problems of loading wheelchair and give effect to suggest conceptual design in relation to develop manufactured goods. We choose 50 participants with disabilities who manual wheelchair or motor scooter users are able to drive own's vehicle, and the method practice in the direct survey. There are some limitations in this study especially in terms of the sampling population. The 88%(n=44) of the participant replied to the driver with disabilities need assistive devices for loading manual wheelchair. They prefer a system that robot arm brings the wheelchair out of the trunk to the driver's seat door.

  • PDF

Clothing for the Handicapped: Brace.Crutch & Wheelchair User (장애인을 위한 의복디자인 (I) -부목 .목발 및 휠체어 사용자를 중심으로-)

  • 홍성순
    • The Research Journal of the Costume Culture
    • /
    • v.9 no.6
    • /
    • pp.830-841
    • /
    • 2001
  • The purpose of my study is to provide some information on clothing for the handicapped with special needs. So I have designed clothes for the handicapped to provide some solutions for their clothing problems. These clothing designs for crutch and wheelchair users were based on solutions proposed by many researchers. The number of handicapped has been increasing gradually for years, especially the physically handicapped. Although they make use of many instruments for ease of movements and other physical conditions, most of the handicapped generally use crutches and wheelchairs. So I designed clothing for the crutch and wheelchair users. In order to ease problems in dressing and undressing, when using the crutch and wheelchair, various physical attributes of clothing should be considered: (1) Selection of fabric, (2) construction and location of the opening, (3) type and location of fastenings, and (4) design of garments for comfort and ease of movement. Clothing should also be able to satisfy psychological needs related to attractive appearance. My designs have proposed seven items of clothing. These include a cape-coat, over-blouse, one-piece dress and an pants for the crutch users. Also, a shirts, pants, and wheelchair wrap for wheelchair users will be displayed.

  • PDF

Design and Implementation of an Omni Wheel-Based Wheelchair Capable of Posture Transformation (전륜 옴니휠을 적용한 자세 변환 휠체어의 설계 및 구현)

  • Ryu, Hye-Yeon;Kwon, Je-Seong;Lim, Jeong-Hak;Lee, Kyung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.97-103
    • /
    • 2021
  • In this paper, an omni wheel-based electric wheelchair is proposed that can achieve safe and convenient movement and can improve the convenience of living for mobility-impaired people who cannot move on their own. Generally, mobility-impaired people are afflicted with physical health issues such as pain and secondary body deformities because they often remain seated in wheelchairs for long periods of time. Hence, an electric wheelchair is required whose posture can be changed and whose size can be adjusted according to the user's body type. Such a wheelchair should also facilitate easy change of direction (even in a narrow space) for convenient movement. In this paper, an electric wheelchair featuring omni wheels is proposed that allows posture transformation and facilitates movement in a narrow space. It is believed that the proposed wheelchair can aid in enhancing the convenience of living for mobility-impaired people.

Development of a Remote Wheelchair Accessibility Assessment System Using Virtualized Reality Technology (가상현실기술을 이용한 원격휠체어접근성평가시스템의 개발)

  • Kim, Jong-Bae
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.33-39
    • /
    • 2006
  • Home modification has come to be recognized as an important intervention strategy to manage health care conditions, maintain or improve functioning, ensure safety, and reduce the wheelchair user's dependency on others. However, the availability of skilled professionals with experience in home modifications for accessibility is limited. A system that enables accurate remote assessments would be an important tool to improve our ability to perform home assessments more easily and at decreased cost. A Remote Wheelchair Accessibility Assessment System (RWAAS) using Virtualized Reality(VR) technology was developed that enabled clinicians to assess the wheelchair accessibility of users' built environments from a remote location. Characteristics of the camera and 3D reconstruction program chosen for the system significantly affect its overall reliability. In this study, we performed two reliability analyses on the hardware and software components: 1) Verification that commercial software can construct sufficiently accurate 3D models by analyzing the accuracy of dimensional measurements in a virtualized environment; 2) comparison of dimensional measurements with four camera settings. Based on these two analyses, we were able to specify a consumer level digital camera and the Photomodeler Pro software for this system. And we then tested the feasibility of the selected software and hardware in an actual environment. Lastly, A field evaluation was performed to test whether this new system is comparable to the traditional method of accessibility assessment to evaluate its ability to assess the accessibility of a wheelchair user's typical built environment. The results of field trials showed high congruence between the assessments by two methods. Findings suggested that the RWAAS assessments have the potential to enable specialists to assess potential accessibility problems in built environments regardless of the location of the client, home, or specialist.

  • PDF

Design of the Power Assist Controller for the In-Wheel Type Smart Wheelchair (인휠형 스마트 휠체어를 위한 힘 보조 제어기 설계)

  • Kong, Jung-Shik;Baek, Seung-Yub
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • This paper presents the design of the power-assisted controller for the in-wheel type smart wheelchair by using torque estimation that is predicted by relationship between input voltage and output wheel angular velocity. Nowadays, interest of the moving assistant aids is increased according to the increase in population of the elderly and the handicapped person. However some of the moving assistant aids have problems. For example, manual wheelchair has difficulty moving at the slope, because users lack the muscular strength of their arm. In electric wheelchair case, users should be weak by being decreased muscles of upper body. To overcome these problems, power-assisted electric wheelchair are proposed. Most of the power-assisted electric wheelchair have the special rims that can measure the user's power. In here, the rims have to be designed to install the sensors to measure user's power. In this paper, we don't design the rim to measure the man power. To predict the man power, we propose a control algorithm of the in-wheeled electric wheelchair by using torque estimation from the wheel. First, we measure the wheel velocity and voltage at the in-wheel electric wheelchair. And then we extract driving will forces by using proposed mathematical model. Also they are applied at the controller as the control input, we verify to be able to control in-wheel type smart wheelchair by using simulation.

Development of The Physical Pressure Monitoring System to Prevent Pressure Ulcers (욕창 방지를 위한 체압 모니터링 시스템 개발)

  • Lee, Ah-Ra;Jang, Kyung-Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.4
    • /
    • pp.209-214
    • /
    • 2011
  • This study suggests a Healthcare System for elderly and disabled who have mobility impairment and use a wheelchair for long time. Seating long time in a wheelchair without reducing pressure causes high risk of developing pressure sores. Pressure sores come with great deal of pain and often lead to develop complication. Not only it takes time and effort to treat pressure sores but also increases medical expenses. Therefore, we will develop a device to help to prevent pressure sores by measuring pressure distribution while seating in a wheelchair and wirelessly send information to user device to check pressure distribution in real time. The equipment to measure body pressure is composed of FSR sitting mat which is a sensor measuring part and an user terminal which is a monitoring part. The designed mat is matrix formed FSR sensor to measure pressure. The sensor send measured data to the controller which is connected to the end of the mat, and then the collected data are sent to an user terminal through a bluetooth. Developing a pressure monitoring system will help to prevent those who have mobility impairment to manage pressure sores and furthermore relieve their burden of medical expenses.

Intelligent Wheelchair System using Face and Mouth Recognition (얼굴과 입 모양 인식을 이용한 지능형 휠체어 시스템)

  • Ju, Jin-Sun;Shin, Yun-Hee;Kim, Eun-Yi
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • In this paper, we develop an Intelligent Wheelchair(IW) control system for the people with various disabilities. The aim of the proposed system is to increase the mobility of severely handicapped people by providing an adaptable and effective interface for a power wheelchair. To facilitate a wide variety of user abilities, the proposed system involves the use of face-inclination and mouth-shape information, where the direction of an Intelligent Wheelchair(IW) is determined by the inclination of the user's face, while proceeding and stopping are determined by the shape of the user's mouth. To analyze these gestures, our system consists of facial feature detector, facial feature recognizer, and converter. In the stage of facial feature detector, the facial region of the intended user is first obtained using Adaboost, thereafter the mouth region detected based on edge information. The extracted features are sent to the facial feature recognizer, which recognize the face inclination and mouth shape using statistical analysis and K-means clustering, respectively. These recognition results are then delivered to a converter to control the wheelchair. When assessing the effectiveness of the proposed system with 34 users unable to utilize a standard joystick, the results showed that the proposed system provided a friendly and convenient interface.

A Novel EMG-based Human-Computer Interface for Electric-Powered Wheelchair Users with Motor Disabilities (거동장애를 가진 전동휠체어 사용자를 위한 근전도 기반의 휴먼-컴퓨터 인터페이스)

  • Lee Myung-Joon;Chu Jun-Uk;Ryu Je-Cheong;Mun Mu-Seong;Moon Inhyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 2005
  • Electromyogram (EMG) signal generated by voluntary contraction of muscles is often used in rehabilitation devices because of its distinct output characteristics compared to other bio-signals. This paper proposes a novel EMG-based human-computer interface for electric-powered wheelchair users with motor disabilities by C4 or C5 spine cord injury. User's commands to control the electric-powered wheelchair are represented by shoulder elevation motions, which are recognized by comparing EMG signals acquired from the levator scapulae muscles with a preset double threshold value. The interface commands for controlling the electric-powered wheelchair consist of combinations of left-, right- and both-shoulders elevation motions. To achieve a real-time interface, we implement an EMG processing hardware composed of analog amplifiers, filters, a mean absolute value circuit and a high-speed microprocessor. The experimental results using an implemented real-time hardware and an electric-powered wheelchair showed that the EMG-based human-computer interface is feasible for the users with severe motor disabilities.

A Study on the Standards of South Korea Type Manual Wheelchair in Accordance with the Human Body Size of Adult (성인인체치수에 따른 한국형수동휠체어 표준규격에 관한 고찰)

  • Kim, S.E.;Song, B.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Manual wheelchair is one of the most used assistant device in Korea and the size of the wheelchair is defined as KS P ISO 7176-5 which follows the ISO 7176-5 standard size. But the standard often doesn't fit to Korean people because the ISO was enacted by foreigners' body sizes. Actually the result of survey from the Korean Agency for Technology and Standards showd that the designated sizes of height, width, deep of seat except armrest and the height of backrest of a chair in the present KS P ISO 7176-5 are much bigger and the height of armrest is smaller than the sizes investigated by the survey. In case the disabled person has a long wheelchair use time everyday, the posture of user should be uncomfortable because the mismatched size should cause user's pelvis rotations, slouching pose and low stability. Also, inside of knee may touch the wheelchair seat and user can't keep a correct posture. In this paper, the body sizes of Korean disabled person were investigated and the correct wheelchair sizes for Korean people are provided.

  • PDF

Development of an EMG-based Powered Wheelchair Controller for Users with High-level Spinal Cord Injury

  • Han, Jeong-Su;Dimitar H. Stefanov;Lee, Hae-Beom;Kim, Dae-Jin;Song, Won-Kyung;Z. Zenn Bien;Park, Kwang-Hyun;Kim, Jong-sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.84.5-84
    • /
    • 2001
  • The objective of this paper is to develop a powered wheelchair controller based on EMG for users with high-level spinal cord injury. EMG is very naturally measured when the user Indicating a certain direction, and the force information which will be used for the speed of wheelchair is easily extracted from EMG. Furthermore, the emergency situation based on EMG will be checked relatively ease. We classified the pre-defined motions such as rest case, forward movement, left movement, and right movement by Fuzzy Min-Max Neural Networks (FMMNN). This classification results shows the feasibility of EMG as an input interface for powered wheelchair. To make the system low cost and small size, we developed EMG AMP and its controller ...

  • PDF