• Title/Summary/Keyword: Wheel-rail

Search Result 583, Processing Time 0.023 seconds

Measuring Technology of Continuous Method for Derailment Coefficient (연속식 탈선계수 측정기술)

  • You, Won-Hee;Ham, Young-Sam
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.138-143
    • /
    • 2006
  • Oscillatory wheel load fluctuation of considerable amplitude is almost always observed on railway vehicle running at high speed. From the acceleration measured on the axle-box, the frequency of this fluctuation is estimated to be approximately within 70 Hz. By the conventional measuring method, continuous outputs of wheel load can not be obtained, so it is difficult to investigate such a high frequency phenomenon exactly. We have developed a new method of measuring the forces and derailment coefficient continuously, using two pairs of strain gauge bridges whose output phases are shifted by 90 degree, and summing up the outputs with a weighting function. This method is available for measuring the forces between wheel and rail up to high frequency. In this paper, continuous method of measuring forces between wheel and rail and derailment coefficient.

  • PDF

A Study on the Track Layout Criteria for the Light Rail Transit with Rubber Wheel (경량전철 고무차륜용 선로선형기준에 관한 연구)

  • 오지택;한승용;이안호;윤태양
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.447-452
    • /
    • 2001
  • This paper proposes the track layout criterion for the LRT(light rail transit). All criterions established concerning dimension and performance of LRT vehicles with rubber wheel. Using theoretical approach, adaptation and validity of criterions are verified. Especially, it were modified according to change of vehicle performance that criterions proposed previous version Proposed criterions may provide a standard scheme for design and construction of the track layout on LRT.

  • PDF

Development of a Wheel/Rail Contact Module for Railway Vehicles (철도차량 차륜/레일 접촉모듈 개발)

  • Han, Hyung-Suk;Hur, Shin;Ha, Sung-Do
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.358-364
    • /
    • 1999
  • A wheel/rail contact module for dynamics analysis of railway vehicles is developed. The developed module is based on non-linear contact and FASTSIM algorithm which calculates contact forces. And the module is incorporated into the general purpose program DADS using user-defined subroutines. The simulation results of this developed program is compared to those of the railway vehicle dynamics analysis program AGEM. Since the module is based on DADS, various simulation environments can be considered.

  • PDF

A Train Position Detection Method by Inductive Radio Line (유도무선에 의한 열차 위치검지 방식)

  • Joung, E.J.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.788-790
    • /
    • 1993
  • In the train position defection for the rail car, which is not able to obtain the short circuit between the track circuit and the wheel, the methods by the inductive radio of non-contact type are applicated. It is represented the principles and the methods of the inductive radio train detection on MLU, Transrapid, HSST, M-Bahn, and People Mover for MAGLEV, on Kobe system for the rubber-tired vehicle, and on ICE for wheel-on-rail.

  • PDF

Contact point analysis for wheel/rail contact force calculation (휠/레일간의 접촉력 계산을 위한 접촉점 해석 알고리즘)

  • 박정훈;임진수;황요하;김창호
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.429-436
    • /
    • 1998
  • In this paper, we derive the algorithm for calculating contact point between wheel and rail and develop the method for track modeling. The proposed methods use travelling distance to represent track center line poistion vector and track orientation with respect to Newtonian reference frame. The proposed methods can be easily used in multibody dynamic analysis. Two numerical examples are given to verify the validity of the proposed methods.

  • PDF

Investigation of Microstructure and Mechanical Properties of KR60 Rail (KR60 레일의 미세조직과 기계적 물성 평가)

  • Choi, Wookjin;Cho, Hui Jae;Yun, Kyung-Min;Min, Kyung-Hwan;Lim, Nam-Hyoung;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.652-657
    • /
    • 2017
  • The use of continuous welded rail is increasing because of its many advantages, including vibration reduction, enhanced driving stability, and maintenance cost savings. In this work, two different types of continuous welded rails were examined to determine the influence of repeated wheel-rail contact on the crystal structure, microstructure and mechanical properties of the rails. The crystal structure was determined by x-ray diffraction, and the microstructure was examined using optical microscopy and scanning electron microscopy. Tensile and microhardness tests were conducted to examine the mechanical behaviors of prepared specimens taken from different positions in the cross section of both newly manufactured rail and worn rail. Analysis revealed that both the new and worn rail had a mixed microstructure consisting of ferrite and pearlite. The specimens from the top position of each rail exhibited decreased lamella spacing of the pearlite and increased yield strength, ultimate tensile strength and hardness, as compared with those from other positions of the rail. It is thought that the enhanced mechanical property on the top position of the worn rail might be explained by a mixed effect resulting from a directional microstructure, the decreased lamella spacing of pearlite, and work hardening by the repeated wheel-rail contact stress.

A Stusy on the Coupled Vibration of Train Wheel and Pail - Dynamic Characteristics of Train Wheel with the Stepped Thickness - (車輪과 鐵路의 連成振動에 관한 硏究)

  • 김광식;박민태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 1987
  • This study is a part of the research on the coupled vibration of train wheel with the stepped thickness and rail. The research was conducted for the purpose of examining the dynamic characteristics of train wheel at the running state and preventing the vibrations of the high speed railway. The stress at the boundary surface of web and rim, .sigma.$_{c}$, was analyzed in consideration of the uniform In-plane compressive stress depending on the conditions of rolling and the In-plane compressive stress depending on the rotation of train wheel. Then the equation of transverse vibration of the annular plate with the stepped thickness was analyzed by Rayleigh-Ritz's method. As a result of study, it was known that the rotational speed increase the natural frequency slightly and the acceleration level highly while the reaction force between train wheel and rail decrease the natural frequency linearly and the critical buckling is generated at n=1.

A Study on the Contact Fatigue Life Evaluation for Railway Wheels Considering Residual Stress Variation (잔류응력 변화를 고려한 철도차량 차륜의 접촉피로 수명평가)

  • Seo, Jung-Won;Goo, Byeong-Choon;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1391-1398
    • /
    • 2004
  • Railway wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles became more severe in recent years due to the increase of speed. Therefore, a more precise evaluation of wheelset life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking heat are two main mechanisms of the railway wheel failure. In this paper, an evaluation procedure for the contact fatigue life of railway wheel is proposed. One of the main sources of the contact zone failure is the residual stress. The residual stress on wheel is formed during the manufacturing process which includes a heat treatment, and then is changed by contact stress developed by wheel/rail contact and thermal stress induced by braking. Also, the cyclic stress history for fatigue analysis is determined by applying finite elements analysis for the moving contact load. The objective of this paper is to estimate fatigue life by considering residual stress due to heat treatment, braking and repeated contact load, respectively.

Development of a Theoretical Wheelset Model to Predict Wheel-climbing Derailment Behaviors Caused by Rolling Stock Collision (철도차량 충돌에 의한 타고오름 탈선거동 예측을 위한 단일윤축 이론모델 개발)

  • Choi, Se-Young;Koo, Jeong-Seo;You, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • This study formulates the theoretical wheel-set model to evaluate wheel-climbing derailments of rolling stock due to collision, and verifies this theory with dynamic simulations. The impact forces occurring during collision are transmitted from a car body to axles through suspensions. As a result of combinations of horizontal and vertical forces applied to axles, rolling stock may lead to derailment. The derailment type will depend on the combinations of the horizontal and vertical forces, flange angle and friction coefficient. According to collision conditions, the wheel-lift, wheel-climbing or roll-over derailments can occur between wheel and rail. In this theoretical derailment model of wheelset, the wheel-climbing derailment types are classified into Climb-over, Climb/roll-over, and pure Roll-over according to derailment mechanism between wheel and rail, and we proposed the theoretical conditions to generate each derailment mechanism. The theoretical wheel-set model was verified by dynamic simulations.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.