• Title/Summary/Keyword: Wheel speed

Search Result 929, Processing Time 0.042 seconds

A Study on Ground Vehicle Mechanics for Steep Slope Forest Operations - Rubber-Tired Log Skidding Tractor Operations - (급경사지 산림작업을 위한 차량의 역학분석에 관한 연구 -차륜형 집재작업 트랙터를 중심으로-)

  • Chung, Joo Sang;Chung, Woo Dam
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.218-225
    • /
    • 1995
  • In this paper, a mechanical analysis model for steep-slope log-skidding operations of a rubber-tired tractor is discussed and the applicability of the model is investigated. The model largely consists of mathematical analysis models for log drag, dynamic vehicle weight distributions and soil-vehicle traction. For the case study, a theoretical data set for log skidding operations is used in investigating the effect of the factors influencing the results of mechanical analysis or the productivity of skidding operations. The analyses include 1) the effect of log choking methods on tangential log-skidding force, 2) the effects of the change in travel speed and log load on the required input power to the wheels and 3) the log skidding performance of a two-wheel drive compared with that of a four-wheel drive.

  • PDF

The Reduction Case of Occurrence of Abnormal Wearing of Rail in Compound Curve Part (복심곡선 레일이상마모 발생 저감 사례)

  • Kim, Wan-Sool
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1097-1106
    • /
    • 2007
  • Rail provides running tract for train and broadly and widely conveys the weight of the train exerted from the train wheels that the rail directly supports onto the cross tie and roadbed, and supports the cross-sectional pressure exerted by centrifugal force at curvatures. That is, stationary rail provides surface on which dynamic train runs and guarantees cross-sectional resistance to enable the vertical snake motion of the train wheels as well as to maintain lateral force at curvatures. Rail provides running surface on which train wheels can run smoothly, and secures vertical and lateral force. However, it undergoes continuous destructive reactions (wearing and damages) and abrasion of the cladding by the train wheels. It is obvious that wearing will result when two metal parts act against each other. However, occurrence of abnormal wearing such as rapid wearing of the rail side due to complex generation of various mechanisms at the contact surface between the rail and train wheel flange. It is not easy to simply examine the causes of occurrence of abnormal wearing of rail and train wheel flange. Although countless number of academicians and specialists are conducting researches on abnormal wearing of rail and vertical wearing of train wheels, I believe it is too early to argue on pros and cons due to insufficiency of officially verified information on the issue. This review will be focusing on the examples of repairs that reduced the generation of abnormal wearing of rail by reviewing and improving characteristics of wearing and slack, speed of the train and cant as well as status of lubricator by choosing the compound curves present in the section between the $Anguk{\sim}Jongno3-ga$ Stations of the Route No. 3 among the compound curve tracks of the Seoul Metro Routes No. 3 & 4 at which abnormal wearing is generated continuously.

  • PDF

Grindability of Cast Ti-X%Zr(X=10,20,40) Alloys for Dental Applications (치과주조용 Ti-X%Zr(X=10,20,40)합금의 연삭성)

  • Jung, Jong-Hyun;Noh, Hyeong-Rok
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2011
  • Purpose: The grindability of binary Ti-X%Zr(X=10,20,40) alloys in order to develop a Ti alloy with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-Zr alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speeds(12000,18000,25000 or 30000rpm) by applying a force(200gr). Grinding rate was evaluated by measuring the amount of metal volume removed after grinding for 1 minute and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared to those for cp Ti(commercially pure titanium) and Ti-6%Al-4%V alloy were used controls. Results: It was observed that the grindability of Ti-Zr alloys increased with an increase in the Zr concentration. More, they are higher than cp Ti, particularly the Ti-20%Zr alloy exhibited the highest grindability at all circumferential speeds. There was significant difference in the grinding rate and grinding ratio between Ti-20%Zr alloy and cp Ti at any speed(p<0.05). Conclusion: By alloying with Zr, the Ti exhibited better grindability at all circumferential speeds. the Ti-20%Zr alloy has a great potential for use as a dental machining alloy.

Development and Performance Test of a Spherical Reaction Wheel Actuator with Magnetic Levitation (자기부상을 적용한 구체 반작용휠 구동기 개발 및 성능 시험)

  • Kim, Dae-Kwan;Yoon, Hyung-Joo;Kim, Yong-Bok;Kang, Woo-Yong;Choi, Hong-Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.731-737
    • /
    • 2012
  • In the present study, a feasibility study on an innovative satellite attitude control actuator is performed. The actuator is specially designed to generate the reaction torque in an arbitrary axis, so that a satellite attitude can be controlled by using itself. It consists of a spherical flywheel and electromagnets for levitation and rotation control of the ball. As the earlier study, a rotating performance test on the spherical actuator is conducted in a single rotating axis and vertical levitation condition. From the test results, it can be confirmed that the maximum speed and torque of the innovative device are 7,200rpm and 0.7Nm, respectively. Using a velocity-voltage characteristic curve of the spherical motor, an open-loop control (V/f constant control) is performed, and the test results show excellent control performance in acceleration and deceleration phases.

Analysis of magnetic properties for the melt-spun $Nd_{14}Fe_{80}B_6$ ribbon alloy (Melt-spun $Nd_{14}Fe_{80}B_6$ 리본합금의 자기적 특성분석)

  • Chung, Kang-Sup;Sung, Hak-Je;Kim, Kun-Han;Park, Yun-Chang;Shu, Su-Jeong;Lee, Kyeong-Sub
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.341-350
    • /
    • 1995
  • $Nd_{14}Fe_{80}B_6$ ribbon alloy was manufactured with using melt-spinning method and analyzed the magnetic properties according to the manufacturing conditions. The microstructure and magnetic properties of melt-spun ribbons are sensitively dependent on the quench rate and annealing conditions. As-quenched $Nd_{14}Fe_{80}B_6$ ribbons with optimum magnetic properties are obtained at wheel speed($v_s$) of about 20m/sec and over quenched ribbons show optimum magnetic properties at $v_s$=22m/see when annealed for 30 minutes at $600^{\circ}C$ under vacuum. The crystallization temperature($T_k$) of $Nd_2Fe_{14}B$ phase is about $595^{\circ}C$ in the DTA analysis.

  • PDF

Characteristics of Glutinous Rice Fractions and Improvement of Yoogwa Processing by Microparticulation/Air-classification (찹쌀의 초미세분쇄/공기분급 특성과 유과제조공정 개선)

  • Park, Dong-June;Ku, Kyung-Hyung;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.1008-1012
    • /
    • 1995
  • Glutinous rice was microparticulated and air-classified at different air classifying wheel speeds (ACWS) of 20,000 rpm and 15,000 rpm in a Turboplex classifier. The starch was concentrated to a coarse fraction and the protein was shifted to a fine fraction. The degree of starch damage of the coarse fraction was comparable to that of traditionally soaked glutinous rice. Yoogwa(Korean cracker) made from the fractions of $ACWS\;15,000{\sim}20,000\;rpm$ and below ACWS 15,000 rpm was very comparable to that made by the traditional method in degree of puffing, hardness and internal structure. It was also confirmed by the sensory evaluation, indicating that the microparticulation/air classification technology could be applied to produce raw material of Yoogwa. The developed noble process could exclude the long soaking step in the traditional Yoogwa process and reduce the pretest time remarkably.

  • PDF

Traffic Safety & Passenger Comforts of a Suspension Bridge Considering Seismic Loads (고속열차 주행 시 지진하중을 고려한 현수교의 주행안전성 및 승차감 분석)

  • Kim, Sung-Il;Kim, Dong-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • The estimation of traffic safety and passenger comfort when the train is running on the bridge is a estimation unique to the railway bridge. The standards for such estimation are included in the Eurocode, the Shinkansen design criteria, and the design guideline of the Honam High-speed railway. The items are bridge responses including vertical displacement of bridge, vertical acceleration, and slab twist. In principle, a direct estimation based on the train responses has to take place. However, the estimation based on the bridge responses can be seen as an indirect estimation procedure for the convenience of the bridge designer. First, it is general practice that traffic safety can be verified as a derailment coefficient or wheel load decrement The general method of estimating passenger comfort is to calculate the acceleration within the train car-body. Various international indexes have been presented for this method. In the present study, traffic safety and passenger comforts are estimated directly by bridge/train interaction analysis. The acceleration and wheel load decrement are obtained for the estimation of traffic safety and passenger comforts of a suspension bridge which has main span length of 300m. Also, the consideration of seismic load with simultaneous action of moving train is done for bridge/train/earthquake interaction analysis.

A Study on Improving Driving Stability System by Yaw Moment Control (요우모멘트를 통한 주행안정성 향상 제어 알고리즘에 관한 연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.392-397
    • /
    • 2006
  • This paper proposed yaw moment control scheme using braking and active rear wheel steering for improving driving stability especially in high speed driving. Its characteristics the unified chassis control system of two equipment that 4WS(4 Wheel Steering) and ESP(Electronic Stability Program). in this study the performance of the vehicle was compared each equipment. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

The Effects of Braking of Trains and Roughness of Rails on the Dynamic Behaviors of Bridges (열차의 제동 및 궤도의 조도가 교량의 동적 거동에 미치는 영향)

  • Kim, Doo-Kie;Yang, Sin-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.93-101
    • /
    • 2010
  • The effects of braking of trains and roughness of rails on the dynamic behavior of bridges are studied. The train-bridge interaction is considered by solving Lagrange's equation of motions. Newmark's direct integration is used to solve the governing equations. Dynamic train loads acting on piers at each time step are evaluated, and the wheel-rail roughness effect is considered by using the PSD curve of the rail. The model of braking forces in bridge section is based on the change of deceleration mentioned in ASTM(American Society for Testing and Materials) E503-82. Only skidding frictions without considering rolling frictions are modeled, and the friction coefficient of 0.25 is assumed. Parametric studies in a simply supported PC Box girder bridge are carried out to verify the present method and to analyze the effects of train speed, wheel-rail roughness, braking forces on dynamic train loads.

Dynamic Simulation of Rail Strain and Vibration Changes According to Track Irregularity (선로 궤도틀림에 따른 레일 변형률과 진동 변화 동역학 시뮬레이션)

  • Kim, Ju Won;Kim, Yong Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • The method of utilizing the strain and vibration values of rails is primarily used to diagnose the condition of wheels and railroad facilities. The dynamic load is measured under the assumption that the strain of the rail and the load of the railroad vehicle are proportional. Wheel condition is measured under the assumption that the magnitude of the defect and the magnitude of the rail vibration are proportional. However, environmental factors affecting the strain and vibration of the rail such as vehicle speed, wheel load, climate, and track conditions are not reflected, many errors occur depending on the measurement conditions. In this study, the effect of track distortion, which is a major indicator of the track condition among the environmental factors that affect the strain and vibration of the rail, on the strain and vibration of the rail, was examined through dynamic simulation. As a measure to reduce the measurement deviation, the effect of securing additional measurement points was analyzed.