• Title/Summary/Keyword: Wheel shaft

Search Result 125, Processing Time 0.025 seconds

Design of a Hub BLDC Motor Vector Control System for Patrol vehicle driving (경계형 차량 구동용 허브 BLDC 전동기 벡터제어 시스템 설계)

  • Park, Won-Seok;Son, Min-Ho;Lee, Min-Woo;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.380-383
    • /
    • 2014
  • Hub BLDC (Brushless Direct Current) motor is a multi-pole outer rotor-type high-efficiency electric motors and the Direct Drive Motor having permanent magnet rotor to drive shaft of the wheel, also called wheel-in motor. In this study, we design a speed controller with vector control technique using the dsPIC30f2010 16 bit micro-controller to drive Hub BLDC motor. Especially, we propose vector control method which reduce complex operation time, and design directly MOSFET inverter directly which gain high economics.

  • PDF

Evaluating Nanomechanical Properties on Interface of Friction-welded TiAl and SCM440 Alloys with Cu as an Insert Metal (삽입금속 Cu를 적용한 TiAl 합금과 SCM440의 마찰용접 계면의 나노역학물성 평가)

  • Kim, Ki-Young;Oh, Myung-Hoon;Choi, In-Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.309-314
    • /
    • 2021
  • Due to the superior corrosion resistance and mechanical properties of TiAl alloy at high temperature, it has been utilized as a turbine wheel of a turbocharger. The dissimilar metallic bonding is usually applied to combine the TiAl turbine wheel with the SCM440 structural steel which is used as a driving shaft. In this study, the TiAl and SCM440 joint were fabricated by using a friction welding technique. During bonding process, to suppress the martensitic transformation and the formation of cracks, which might reduce a strength of the joints, Cu was used as an insert metal to relieve stress. As a result, the intermetallic compounds (IMCs) layer was observed at TiAl/Cu interface while no IMC formation was formed at SCM440/Cu interface. Since understanding of the IMCs effects on the mechanical performance of welded joint is also essential for ensuring the reliability and integrity of the turbocharger system, we estimated the nanohardness of welded joint region through nanoindentation. The relation between the microstructural feature and its mechanical property is discussed in detail.

Development of Vibration Absorption Device for the Transportation-Trailer System (III) - Leaf Spring Suspension Device - (수송 트레일러의 충격흡수장치 개발(III) -평판 스프링 현가장치-)

  • Hong, J.H.;Park, W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.224-229
    • /
    • 2008
  • This study was aimed to minimize the impact force and vibration transmitted to the transporting materials from the trailer and wheel shaft by installing the leaf spring suspension device at the space between the wheel shaft and frame of power tiller trailer. The developed trailer equipped with leaf spring suspension device was compared to the existing trailer without suspension device, in order to identify the vibration absorption effect of the leaf spring. The results of this study could be summarized as follows; (1) The length and the maximum bending amount of the leaf spring were designed as 1,000 mm and 42 mm, respectively, considering the possible space for installing at below the trailer. When 4 leaf springs were installed on both wheel shafts, the allowable maximum load was identified as 9,418 N. (2) The average vibration accelerations for the frequency less than 20 Hz, where the severe transporting loss could be represented, were $0.017\;m/s^2$ and $0.133\;m/s^2$ for the developed and the existing trailer, respectively, showing the vibration absorption effect of about 87%. And the average vibration accelerations on the driver's seat for the frequency less than 20 Hz were $0.01\;m/s^2$ and $0.20\;m/s^2$ for the developed and the existing trailer, respectively, which showed the similar vibration absorption effect. (3) The change of the average vibration accelerations for the frequency from 20 Hz to 80 Hz showed the similar tendency with the result for the frequency less than 20 Hz, but the effect for developed trailer was reduced slightly. And the effect of vibration absorption for the above 80 Hz was reduced highly. However, by installing the leaf spring suspension device at the trailer, the low frequency below 40 Hz, which could affect on transporting loss severely, could be reduced highly. (4) The maximum vibration acceleration for the frequency less than 20 Hz were $0.027\;m/s^2$ and $1.267\;m/s^2$ for the developed and the existing trailer, respectively. And the change of maximum acceleration between 20 Hz and 120 Hz was showed similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

Development of Pump-Drive Turbine with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application (정압 베어링을 적용한 초임계 CO2 발전용 펌프-구동 터빈 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Yoon, Euisoo
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, we present a hydrostatic bearing design and rotordynamic analysis of a pump-and-drive turbine module for a 250-kW supercritical CO2 cycle application. The pump-and-drive turbine module consists of the pump and turbine wheel, assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 21,000 rpm and the rated power is 143 kW. For the bearing operation, we use high-pressure CO2 as the lubricant, which is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various orifice diameters, and then select the diameter that provides the maximum bearing stiffness. We also conduct a rotordynamic analysis based on the design parameters of the pump-and-drive turbine module. The predicted Campbell diagram shows that there is no critical speed below the rated speed, owing to the high stiffness of the bearings. Furthermore, the predicted damping ratio indicates that there is no unstable mode. We conduct the operating tests for the pump and drive turbine modules within the supercritical CO2 cycle test loop. The pressurized CO2, at a temperature of 136℃, is supplied to the turbine and we monitor the shaft vibration during the test. The test results show that there is no critical speed below the rated speed, and the shaft vibration is controlled to below 3 ㎛.

A Study on Adhesive Joints for Composite Driveshafts (복합재료 동력전달축의 접착조인트에 관한 연구)

  • 김진국;이대길;최진경;김일영
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.13-21
    • /
    • 2001
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece driveshafts composed of carbon/epoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesive joint was used to join the composite shaft and the aluminum yoke. The torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element analysis and compared with the experimental result. Torque transmission capability was based on the Tsai-Wu failure index fur composite shaft and the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and the finite element analyses, it was found that the static torque transmission capability of the composite driveshaft was highest at the critical yoke thickness, and saturated beyond the critical length. Also, it was found that the one-piece composite driveshaft had 40% weight saving effect compared with a conventional two-piece steel driveshaft.

  • PDF

Development of Turbo Expanders with Hydrostatic Bearings for Hydrogen Liquefaction Plants (정압 베어링을 적용한 수소 액화 공정용 터보 팽창기 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Lim, Hyungsoo
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • This paper presents a hydrostatic bearing design and rotordynamic analysis of a turbo expander for a hydrogen liquefaction plant. Th~e turbo expander includes the turbine and compressor wheel assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 75,000 rpm and the rated power is 6 kW. For the bearing operation, we use pressurized air at 8.5 bar as the lubricant that is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various gauge pressure ratios and select the orifice diameter providing the maximum bearing stiffness. Additionally, we conduct a rotordynamic analysis based on the calculated bearing stiffness and damping considering design parameters of the turbo expander. The predicted Cambell diagram indicates that there are two critical speeds under the rated speed and there exists a sufficient separation margin for the rated speed. In addition, the predicted rotor vibration is under 1 ㎛ at the rated speed. We conduct the operating test of the turbo expander in the test rig. For the operation, we supply pressurized air to the turbine and monitor the shaft vibration during the test. The test results show that there are two critical speeds under the rated speed, and the shaft vibration is controlled under 2.5 ㎛.

POSSIBILITIES TO IMPROVE TRANSIENT GEAR SHIFT NOISE (SHIFT CLONK) IN A PASSENGER CAR

  • BIERMANN J. W.;REITZ A.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • The presented investigation of shift clonk in a vehicle with front-wheel drive shows how a detailed analysis of the complete acoustic system with respect to excitation, transfer and radiation foremost enables possibilities of noise reduction to be worked out. One of the most important basics for the shift clonk analysis was a synchronous measurement of both, torsional vibrations in the drive train on the excitation side as well as airborne and structure-borne noise signals on the transfer and radiation side. Thus, root causes could be identified and improvement measures of the internal shift system could be worked out. An analysis of the transfer paths by means of airborne and structure borne noise measurements made evident that the side shafts were responsible for the disturbing frequencies in the transfer paths. With the help of the FE-simulation it was possible to develop measures of structure optimisation for the side shaft system. The realisation of these measures clearly reduced the shift-noises in the vehicle interior.

Empirical Modeling of Steering System for Autonomous Vehicles

  • Kim, Ju-Young;Min, Kyungdeuk;Kim, Young Chol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.937-943
    • /
    • 2017
  • To design an automatic steering controller with high performance for autonomous vehicle, it is necessary to have a precise model of the lateral dynamics with respect to the steering command input. This paper presents an empirical modeling of the steering system for an autonomous vehicle. The steering system here is represented by three individual transfer function models: a steering wheel actuator model from the steering command input to the steering angle of the shaft, a dynamic model between the steering angle and the yaw rate of the vehicle, and a dynamic model between the steering command and the lateral deviation of vehicle. These models are identified using frequency response data. Experiments were performed using a real vehicle. It is shown that the resulting identified models have been well fitted to the experimental data.

Driveline Vibration Reduction of FR(front engine rear wheel drive) Vehicle at Rapid Acceleration (후륜 구동 차량의 급가속 시 구동계 진동 저감)

  • Kim, Yong-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.592-599
    • /
    • 2014
  • A torsional vibration at driveline happens seriously at rapid vehicle acceleration. The torsional vibration at driveline can be reduced by optimization of joint angle and yoke phase angle of driveline. But, the joint angle of driveline is changed according to vehicle driving condition as acceleration, deceleration, forward and backward driving, so that excessive vibration is transmitted to vehicle body at specific driving condition. Especially under rapid acceleration condition, vibration transmitted to body could be maximized because excitation force at rapid acceleration is bigger than that at normal driving condition due to changed joint angle. The torsional vibration of driveline can be kept at low level by controlling suspension parameter to minimize rigid axle displacement as well as optimizing joint angles considering the vehicle acceleration condition.

A Study on the Evaluation Technique of Quantified Damage for Powertrain System on Traveled Courses (주행노면에 따른 동력장치의 상대 피로 손상도 평가 기법에 관한 연구)

  • Lee, Sang-Ho;Lee, Jeong-Hwan;Kang, Do-Kyung;Goo, Sang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.74-81
    • /
    • 2007
  • This paper focuses on improvement of the reliability for endurance test to serve military automobiles. The driving loads have been measured by use of the wireless telemetry system for the drive shaft of the 4-wheel drive car. In order to analyze the transmission input torque and engine revolution of loads of the test courses and unpaved road have been made use of the revolution counting and cumulative damage by miner's rule. This paper presents the evaluated result for quantified damage about the test courses and roads.