• Title/Summary/Keyword: Wheel radius

Search Result 123, Processing Time 0.021 seconds

Wheel curve generation error of aspheric grinding in parallel grinding method (비구면 평행연삭에서의 휠구면형상 창성오차)

  • Hwang Yeon;Kuriyagawa T.;Lee Sun-Kyu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.344-349
    • /
    • 2005
  • This paper presents a geometrical error analysis of wheel curve generation method for micro aspheric surface machining using parallel grinding method. In aspheric grinding, wheel wear in process is crucial parameter for profile error of the ground surface. To decrease wheel weal parallel grinding method is adopted. Wheel and work piece (Tungsten carbide) contact point changes during machining process. In truing process of the wheel radius is determined by the angle and distance between wheel and truer. Wheel radius error is predominantly affected by vertical deviation between the wheel rotation center and the truer center Simulation for vertical error and wheel radius error shows same tendency that expected by geometrical analysis. Experimental results show that the analysis of curve generation method matches with simulations and wheel radius errors.

  • PDF

Experiment for Modification of wheel-radius using Curvature (방향이탈각을 이용한 구륜보정을 위한 실험)

  • 노택종;문종우박종국
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.267-270
    • /
    • 1998
  • Unequal wheel-radius causes odometry errors which may be increased unbounded. This paper deals with the practical method for modification of wheel-radius through experiments. This can increase the robot's odometric accuracy. Experimental results are presented that show improvement of odometric accuracy.

  • PDF

Reducing the Minimum Turning Radius of the 2WS/2WD In-Wheel Platform through the Active Steering Angle Generation of the Rear-wheel Independently Driven In-Wheel Motor (후륜 독립 구동 인 휠 모터의 능동적 조향각 생성을 통한 2WS/2WD In-Wheel 플랫폼의 최소회전 반경 감소)

  • Taehyun Kim;Daekyu Hwang;Bongsang Kim;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • In the midst of accelerating wars around the world, unmanned robot technology that can guarantee the safety of human life is emerging. ERP-42 is a modular platform that can be used according to the application. In the field of defense, it can be used for transporting supplies, reconnaissance and surveillance, and medical evacuation in conflict areas. Due to the nature of the military environment, atypical environments are predominant, and in such environments, the platform's path followability is an important part of mission performance. This paper focuses on reducing the minimum turning radius in terms of improving path followability. The minimum turning radius of the existing 2WS/2WD in-wheel platform was reduced by increasing the torque of the independent driving in-wheel motor on the rear wheel to generate oversteer. To determine the degree of oversteer, two GPS were attached to the center of the front and rear wheelbases and measured. A closed-loop speed control method was used to maintain a constant rotational speed of each wheel despite changes in load or torque.

An Experimental Study on the Deburring Characteristics according to rpm Change of Deburring Wheel (디버링 휠의 회전수 변화에 따른 디버링 특성에 관한 실험적 연구)

  • Cheon, Kyeong-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The modern aircraft consists of tens/hundreds of thousands of components. A large proportion of these components are manufactured using a machining process. A deburring process must be performed after to machining. This study investigates the effect of changes in the deburring wheel rpm on the deburring force and radius. The deburring wheel is used to trim sharp edges off machined parts of the aircraft. The deburring wheel used consists of a core and a nylon hair(this new concept is protected under patent). We find that higher deburring wheel rpm results in increased deburring force and radius. For deburring wheel rotation rates of 500~750rpm, deburring force of 3.4~6.5kgf and deburring radius of 0.4~0.5mm were observed.

A Study on the Characteristics of the Wheel/Roller Contact Geometry (차륜/궤조륜 기하학적 접촉특성에 관한 연구)

  • Hur, Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.618-623
    • /
    • 2006
  • Understanding the contact between wheel and rail is a starting point in railway vehicle dynamic research area and especially analysis for the contact geometry between wheel and rail is important. On the one hand, the critical speed as the natural characteristics of rolling-stock is generally tested on the roller rig. The geometrical characteristics of the wheel/roller contact on the roller rig are different from these of the general wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. Thus, in this paper we developed the algorithm to analyze the wheel/roller contact geometry of our roller rig which is constructed now and analyzed the difference between whee/roller contact and wheel/rail contact. In conclusion, we found that the yaw motion of wheelset and the roller radius influence the geometrical contact parameters in wheel flange contact area.

Systematic Isotropy Analysis of Caster Wheeled Mobile Robot with Steering Link Offset Different from Wheel Radius

  • Kim, Sung-Bok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.214-220
    • /
    • 2006
  • This paper presents the systematic isotropy analysis of a fully actuated caster wheeled omnidirectional mobile robot (COMR) with the steering link offset different from the wheel radius, which can be considered as the generalization of the previous analysis. First with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, the necessary and sufficient conditions for the isotropy of a COMR are derived and examined to categorize there different groups, each of which can be dealt with in a similar way. Third, for each group, the isotropy conditions are further explored so as to identify four different sets of all possible isotropic configurations. Fourth, for each set the expressions of the isotropic characteristic length required for the isotropy of a COMR are elaborated.

  • PDF

Corrected equations of motion for a wheel-axle set negotiating an arbitrarily changing radius curve (곡선 경사 선로상 차륜-윤축셋에 대한 수정 운동방정식)

  • Choe, Seong-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.940-952
    • /
    • 2007
  • It is found that there are many serious errors in deriving the existing governing equations of motion for a wheel-axle set negotiating an arbitrarily changing radius curve by Vijay K. Garg and Rao V. Dukkipati. Among other things, despite the hypothesis on arbitrarily changing radius of curve, there had been no taking a time derivative of the radius R in the first half of the derivation. Even if the D'lambert force arising from the centrifugal acceleration of vehicle body or bogie was appropriately taken into account while calculating cant deficiency, it is unnecessarily duplicated in the force vectors of governing equations. The graphical model given in Fig. 5.15 is not enough to follow those developed expressions from both physical and structural points of view. Besides, there are some blunders in assigning plus or minus sign not to be regarded as simple typographic ones and similar mistakes are committed in deriving creep force expressions as in the case of a wheel-axle set on a tangent track.

  • PDF

Setting method of virtual rigid axles for steering control (조향제어를 위한 가상고정축 설정 방법)

  • Moon, Kyeong-Ho;Mok, Jai-Kyun;Chang, Se-Ky;Lee, Soo-Ho;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.236-243
    • /
    • 2007
  • Steering systems are classified as FWS(front-wheel steering), RWS(rear-wheel steering) and AWS(all-wheel steering) according to steering position. AWS is effective to reduce turning radius and platform length because all wheels are steered. Although various rear wheel control logics for AWS were developed, these are applied to four wheel steering cars. Therefore new control logics must be developed to apply articulated vehicles. In the present study, it is suggested how to control the real wheels based on the virtual rigid axles and also how to set it to minimize the turning radius.

  • PDF

Tool Locus Analysis of Ultra-precision Inclined Grinding (초정밀 경사축 연삭가공에서의 공구 궤적 해석)

  • Hwang, Yeon;Park, Soon-Sub;Lee, Ki-Yong;Won, Jong-Ho;Kim, Hyun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.35-40
    • /
    • 2009
  • This paper presents the geometrical analysis of an inclined ultra-precision grinding technology using simulations about grinding point locus for micro lens manufacturing. Simulation results show the relationship between radius ratios ($R_1/R_2$) and wheel center locus. Furthermore, the critical grinding wheel radius ($R_1$) can be calculated from work-piece radius ($R_2$) and inclined angle ($\theta=-45^{\circ}$). These achievements could be applied to calculate CNC data in ultra-precision grinding and give insight for wheel wear and compensation grinding.

A Wheel Wear Analysis of Railway Vehicle on a Curved Section (곡선 구간에서 철도 차량 휠의 마모 특성 해석)

  • Kang, Juseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.547-555
    • /
    • 2016
  • The wheel wear of a railway vehicle is mainly generated when maneuvering on a curved track. The change in the wheel profile affects the dynamic stability of the vehicle. In this analysis, the wheel wear volume was calculated while changing the velocity and radius of the curve to analyze the wear characteristics of a wheel at a curved section. The wear index was calculated from a vehicle dynamic analysis based on a multibody dynamics analysis and wear volume from a wear model by British Rail Research. The wear volume at a radius of 300 m is dominant compared with other radii. The wear volume was calculated by assigning different coefficients of friction to the tread and flange of the wheel to investigate the effect of lubrication on the wear characteristics. The effect of the improvement by lubrication is calculated by varying the radius of the track, and is assessed on an actual urban railway section.