• 제목/요약/키워드: Wheel mobile robot

검색결과 236건 처리시간 0.029초

모바일 로봇의 특이형상 분석 (Singularity Analysis of Mobile Robots)

  • 김도형;김희국;이병주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.427-427
    • /
    • 2000
  • In this study, singularity of two types of mobile robots for various input joints are investigated: One is the mobile robot with three caster wheels and the other is the mobile robot with two conventional wheels and one caster wheel. Kinematic models are derived via the transfer method of generalized coordinates. Then, determinants of the Jacobian of the mobile robots are used to identify the singularity configurations.

  • PDF

휠구동방식의 자유이동로봇을 위한 조향제어방법 (A steering control method for wheel-driven mobile robot)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.787-792
    • /
    • 1991
  • This paper proposes a steering control algorithm for non-holonomic mobile robots. The steering control algorithm is essential to navigate autonomous vehicles which employ comination of the dead reckoning and absolute sensor system such as a machine vison for detecting landmarks in order to estimate the current location of the mobile robot. The proposed algorithm is based on the minimum time BANG-BANG controller and curvature-continuity curve design method. In the BANG-BANG control scheme we introduce velocity/acceleration limiter to avoid any slippage of driving wheels. The proposed scheme is robot-independent and hence can be applied to various kinds of mobile robot or vehicles. To show the effectness of the proposed control algorithm, a series of computer simulations were conducted for two-wheel driven mobile robot.

  • PDF

바퀴형 이동로봇의 기구학 (Generalized Kinematics Modeling of Wheeled Mobile Robots)

  • 신동헌;박경훈
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.118-125
    • /
    • 2002
  • The previous kinematic analysis of wheeled mobile robots(WMRs) is performed in an ad-hoc manner, while those of the robot manipulators are done in a consistent way using the coordinate system assignment and the homogeneous transformation matrix. This paper shows why the method for the robot manipulators cannot be used directly to the WMRs and proposes the method for the WMRs, which contains modeling the wheel with the Sheth-Uicker notation and the homogeneous transformation. The proposed method enable us to model the velocity kinematics of the WMRs in a consistent way. As an implementation of the proposed method, the Jacobian matrices were obtained for conventional steered wheel and non-steered wheel respectively and the forward and inverse velocity kinematic solutions were calculated fur a tricycle typed WMR. We hope that our proposed method comes to hold an equivalent roles for WMRs, as that of the manipulators does for the robot manipulators.

자력선 유도를 이용한 벽면이동로봇용 영구자석바퀴의 탈착에 관한 연구 (A Study on a Detachment of a Permanent Magnet Wheel for a Wall-Climbing Mobile Robot using Magnetic Inducement)

  • 한승철;이화조
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.143-149
    • /
    • 2002
  • Robot are necessary to automate the work on a vertical plane of work piece to produce a large structure like a ship, so that a permanent magnet wheel has been attempted to be used for a mobile robot. Its adhesive power was enhanced by restricting the occurrence direction of magnetic flow. Furthermore a method which weakened the adhesive force was developed for easy detachement of the wheel by changing magnetic flow with metal pin. To measure the characteristics of the adhesive and detaching farces, a load call and a gaussmeter were used. The result showed that the adhesive power was reduced to 1/3 of normal state by using 4 inducing pins.

소형 이동 로봇의 사람 추적 성능 개선을 위한 휠 오도메트리 기반 실시간 보정에 관한 연구 (Real-Time Correction Based on wheel Odometry to Improve Pedestrian Tracking Performance in Small Mobile Robot)

  • 박재훈;안민성;한재권
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.124-132
    • /
    • 2022
  • With growth in intelligence of mobile robots, interaction with humans is emerging as a very important issue for mobile robots and the pedestrian tracking technique following the designated person is adopted in many cases in a way that interacts with humans. Among the existing multi-object tracking techniques for pedestrian tracking, Simple Online and Realtime Tracking (SORT) is suitable for small mobile robots that require real-time processing while having limited computational performance. However, SORT fails to reflect changes in object detection values caused by the movement of the mobile robot, resulting in poor tracking performance. In order to solve this performance degradation, this paper proposes a more stable pedestrian tracking algorithm by correcting object tracking errors caused by robot movement in real time using wheel odometry information of a mobile robot and dynamically managing the survival period of the tracker that tracks the object. In addition, the experimental results show that the proposed methodology using data collected from actual mobile robots maintains real-time and has improved tracking accuracy with resistance to the movement of the mobile robot.

전방향 이동로봇 위치제어 알고리즘과 실험적 검증 (Position Control Algorithm and Experimental Evaluation of an Omni-directional Mobile Robot)

  • 주백석;조강익;성영휘
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.141-147
    • /
    • 2015
  • In this study, a position control algorithm for an omni-directional mobile robot based on Mecanum wheels was introduced and experimentally evaluated. Multiple ultrasonic sensors were installed around the mobile robot to obtain position feedback. Using the distance of the robot from the wall, the position and orientation of the mobile robot were calculated. In accordance with the omni-directional velocity generation mechanism, the velocity kinematics between the Mecanum wheel and the mobile platform were determined. Based on this formulation, a simple and intuitive position control algorithm was suggested. To evaluate the control algorithm, a test bed composed of artificial walls was designed and implemented. While conventional control algorithms based on normal wheels require additional path planning for two-dimensional planar motion, the omni-directional mobile robot using distance sensors was able to directly follow target positions with the simple proposed position feedback algorithm.

모바일-매니퓰레이터 구조 로봇시스템의 안정한 모션제어에 관한연구 (A Study on Stable Motion Control of Mobile-Manipulators Robot System)

  • 박문열;황원준;박인만;강언욱
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.217-226
    • /
    • 2014
  • Since the world has changed to a society of 21st century high-tech industries, the modern people have become reluctant to work in a difficult and dirty environment. Therefore, unmanned technologies through robots are being demanded. Now days, effects such as voice, control, obstacle avoidance are being suggested, and especially, voice recognition technique that enables convenient interaction between human and machines is very important. In this study, in order to conduct study on the stable motion control of the robot system that has mobile-manipulator structure and is voice command-based, kinetic interpretation and dynamic modeling of two-armed manipulator and three-wheel mobile robot were conducted. In addition, autonomous driving of three-wheel mobile robot and motion control system of two-armed manipulator were designed, and combined robot control through voice command was conducted. For the performance experiment method, driving control and simulation mock experiment of manipulator that has two-armed structure was conducted, and for experiment of combined robot motion control which is voice command-based, through driving control, motion control of two-armed manipulator, and combined control based on voice command, experiment on stable motion control of voice command-based robot system that has mobile-manipulator structure was verified.

The Design and Actuator Sizing for Redundantly Actuated Omni-Directional Mobile Robot

  • Park, Tae-Bum;Yi, Jae-Hoon;Yi, Byung-Ju;Kim, Whea-Kuk;Yu, Bum-Jae;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.137.4-137
    • /
    • 2001
  • Omni-directional mobile robots have been employed popularly in several application areas. However, the optimal design has not been considered yet. This paper introduces an optimal design methodology for omni-directional mobile robots. Optimal design parameters such as the offset distance and the wheel radius are identified with respect to isotropy. Furthermore, the force transmission ratio and actuator sizing problem are treated. Conclusivel, three cases are compared minimum actuation, two active caster wheel, and three active caster wheel, we claim that the redundantly actuated mobile robot with three active caster wheel has the best performance.

  • PDF

메카넘 휠 이동로봇의 바퀴 슬립을 고려한 위치 추정 연구 (A Study of Position Estimation Considering Wheel Slip of Mecanum Wheeled Mobile Robot)

  • 오인진;권건우;양현석
    • 한국군사과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.401-407
    • /
    • 2019
  • In this paper, the position estimation considering wheel slip of mecanum wheeled mobile robots is discussed. Since the mecanum wheeled mobile robot does not need a space to rotate, it is very suitable in narrow industrial fields. However, the slip caused by the roller attached to the wheel makes it difficult to estimate the position precisely. Due to these limitations, mecanum wheels are rarely applied to unmanned mobile robots in automation factories. In this paper, a method to compensate the orientation and distance error caused by the slip is proposed. The exact orientation is measured by fusing gyro and magnetometer sensor data with application of Kalman filter. In addition, the kinematic model accounting slip effects will be defined to compensate the distance error.

외바퀴 구동 GYROBO의 제작 및 밸런싱 제어 구현 (Implementation and Balancing Control of One-Wheel Robot, GYROBO)

  • 김필교;박준형;하민수;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.501-507
    • /
    • 2013
  • This paper presents the development and balancing control of GYROBO, a one wheeled mobile robot system. GYROBO is a disc type one wheel mobile robot that has three actuators, a drive motor, a spin motor, and a tilt motor. The dynamics and kinematics of GYROBO are analyzed, and simulation studies conducted. A one-wheeled robot, GYROBO is built and its balancing control is performed. Experimental studies of GYROBO's balancing abilities are conducted to demonstrate the gyroscopic effects generated by the spin and tilt angles of a flywheel.