• Title/Summary/Keyword: Wheel load

Search Result 529, Processing Time 0.027 seconds

Development of Chip-harvester for Collecting Forest Biomass and an Analysis of Productivity and Cost of Operation (산림바이오매스 수집용 칩하베스터의 개발과 생산성 및 비용 분석)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.54-62
    • /
    • 2017
  • This study was carried to develop the chip-harvester and to analysis the operation productivity and cost for effective collection and forwarding of forest biomass. Main target specification of chip-harvester is speed of 8km/h, maximum climbing capacity of $30^{\circ}$ and maximum load capability of 2000 kg. Body structure is articulate type to reduce turning radius. Driving equipment is six-wheel drive, and a rear wheel is tandem bogie type to increase grip force. As a result of the driving test about developed chip-harvester, driving speed was 6.9 km/hr and 8.1 km/hr in ${\pm}10%$ slope with loaded and 7.3 km/hr and 7.9 km/hr in ${\pm}10%$ slope without load. As a result of the operation productivity and cost, operation productivity of grinding and forwarding was approximately $10m^3$ per day, and operation cost was 393,126 won per day.

Roadbed Bearing Capacity Associated with Estimated Impact Factor in Conventional and Improved Turnout System (기존 및 개량 분기기 충격계수 산정에 따른 노반 지지력)

  • Jeon, Sang-Soo;Eum, Ki-Young;Kim, Jae-Min
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.582-588
    • /
    • 2007
  • Since the turnout system in railroad restricts the train speed, the KNR (Korean National Railroad) provides the specification for the speed (130km/h) of the train when the train passes the turnout system. Therefore, the turnout system in pre-existing railroad is necessary to be improved to speed-up for the train. In this study, the dynamic wheel-load field tests have been performed to evaluate the track performance and the roadbed bearing capacity has been examined using numerical analysis at the turnout crossing in the conventional and improved turnout system. The impact factor is estimated using the data sets achieved from the dynamic wheel-load field tests in the conventional and improved turnout system. The stress acting on the roadbed for the improved turnout system is substantially decreased compare to that for the conventional turnout system.

Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula (Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정)

  • Kim, Kyeong-Dae;Kim, Ji-Tae;Ahn, Da-Vin;Park, Jung-Ho;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

Analysis of the axle load of an agricultural tractor during plow tillage and harrowing

  • Hong, Soon-Jung;Park, Seung-Je;Kim, Wan-Soo;Kim, Yong-Joo;Park, Seong-un
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.665-669
    • /
    • 2016
  • Analysis of the load on the tractor during field operations is critical for the optimal design of the tractor. The purpose of this study was to do a load analysis of an agricultural tractor during plowing and harrowing. First, a load measurement system was developed and installed in a 71 kW agricultural tractor. Strain-gauges with a telemetry system were installed in the shaft located between the axles and the wheels, and used to measure the torque of the four driving axles. Second, field experiments were conducted for two types of field operations (plowing, harrowing), each at two gear levels (M2, M3). Third, load analysis was conducted according to field operation and gear level. At M2 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were 13,141 Nm; 4,381 Nm; and 6,971 Nm (${\pm}397.8Nm$, respectively). For harrowing, at M2 gear selection, torque values were, 14,504 Nm; 1,963 Nm; and 6,774 Nm (${\pm}459.4Nm$, respectively). At M3 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were,17,098 Nm; 6,275 Nm; and 8,509 Nm (${\pm}462.4Nm$, respectively). For harrowing at M3 gear selection, maximum, minimum, and average (S. D.) torque values were, 20,266 Nm; 2,745 Nm; and 9,968 Nm (${\pm}493.2$). The working speed of the tractor increased by approximately 143% when shifted from M2 (7.2 km/h) to M3 (10.3 km/h); while during plow tillage and harrowing, the load of the tractor increased approximately 1.2 times and 1.5 times, respectively.

Development of an Input Force Measuring Method for Vehicle Tests (실차 주행중 입력하중 계측 기법 개발)

  • Lee, Kwang Chun;Kim, Seung Han;Lee, Kang In;Bae, Byung Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.143-147
    • /
    • 2017
  • In this study, a driving load measuring method has developed without utilizing WFT. To measure the driving load, we developed a three-axis load cell with a strain gage. A method to verify the performance of load cells was developed. A system to measure the input load was proposed, and it was verified by evaluation. The measurement error of the impact road surface was found to be less than 20%. However, except under impact road surface conditions, the proposed system can be applied for actual vehicle input load measurement. The influence of tire evaluation tests were carried out through the handling verification evaluation. The input load measurement methods proposed in the present study make performance verification possible without using WFT.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Study for Safety on the Curve in the High-speed Railway Track (고속철도 궤도의 곡선부 주행안전성 평가)

  • Seo Sa-Bum;Lee Dong-Ho;Koo Bong-Kue
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.354-360
    • /
    • 2005
  • The railway track and the substructures constructed in the field test section of Kyongbu High Speed Line are the structures for HSL, for the first time designed and constructed by domestic technical group. It is very important to verify the local design criteria and specifications for these structures and also to assure the recordings for vibration or deflection produced on the essential parts of the structures. The study to verify the high-speed railway track performance and to ensure the run in safety on the track in curved section during the KTX run. Finally, the conclusion are drawn as follows. The measuring values of the deflection effort of the rail and displacement for verifying the track performance in the field test section of Kyoungbu HSL satisfy the criteria of the foreign countries (Japan and Germany). The measured value for the wheel load and the presumed value show the consistent tendency. The wheel loads of the exterior and interior of the rails at the speed superior to 300km/h are measured same. Finally, the comparison between the theoretical value presented during the verification of the derailment to evaluate the safety of the train run at the time of the detailed design of the track and the measured value in the field shows that the correct design of track structure was applied.

A Study on the Optimal Grinding Condition of Ceramics using the Design of Experiments (실험 계획법을 이용한 세라믹 재료의 최적 연삭 조건에 관한 연구)

  • Jeong, Eul-Seop;Kim, Seong-Cheong;So, Ui-Yeol;Lee, Geun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.141-146
    • /
    • 2002
  • This paper has studied to obtain the grinding characteristics and optimal grinding conditions of ceramic materials in the grinding with diamond wheel by design of experiments. The load on wheel by varying the feed rate was related with the surface roughness due to the minute destruction phenomenon of grains for the $Si_3\;N_4\;and\;ZrO_2$. The depth of cut is related with the surface roughness because the grinding is carried out by grain shedding process due to the brittle fracture phenomenon for the $A1_2\;O_3$. The major factors affecting the surface roughness and the optimum grinding conditions were obtained with minimum experiments using design of experiments.

The Structural and Fatigue Analysis for the Bogie Frame of the Rubber Wheel AGT (고무차륜형 AGT 주행장치의 구조 및 피로해석)

  • 유형선;권혁수;윤성호
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.31-38
    • /
    • 1999
  • Two representative types of the AGT (Automated Guideway Transit) system, which are bogie and steering types, are available for the side-guided system. Each system primarily consists of the bogie frame, suspensions, wheelsets and axles, braking system and transmission system. Among these components, the bogie frame is one of the most significant components subjected to the whole vehicle and passenger loads. This paper describes structural analyses and associated fatigue analyses for each bogie frame depending on the various loading conditions on a basis of the railway vehicle code UIC 515-4. Subsequently, comparisons are made between those two types to estimate which type is more reliable in terms of strength and fatigue. It is observed that the bogie type is a little advantageous over the steering one from the strength analysis. However, the two types are found to be in a reliable range of fatigue even though a realistic fatigue load case is further carried out. In addition, an optimal size of thickness is suggested for designs of the bogie frame.

  • PDF

Vibration simulation of a multi-story high-speed railway station

  • Gao, Mangmang;Xiong, Jianzhen;Xu, Zhaojun
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • Station is an important building in high-speed railway, and its vibration and noise may significantly affect the comfort of waiting passengers. A coupling vibration model for train-structure system is established to analyze and evaluate the vibration level of a typical waiting hall under dynamic train load. The motion of a four-axle vehicle with two suspension system is modeled in multi-body dynamics with linear springs and dampers employed. The station is modeled as a whole finite element structure which is 113 m in longitudinal and 163.5 m in lateral, and the stiffness of the station foundation is considered. According to the assumptions that both wheel and rail are rigid bodies and keep contact to each other in vertical direction, and the wheel/rail interaction and displacement coordination in horizontal direction is defined by the simplified Kalker creep theory, the vehicle spatial vibration model has 27 degrees-of-freedom. An overall analysis procedure is made of the train moving through the station, by which the dynamic responses of the train and the station are calculated. According to the comparison between analysis and test results, the actual connection status between different parts of the station is estimated and the vibration level of the waiting hall is evaluated.