• Title/Summary/Keyword: Wheel load

Search Result 527, Processing Time 0.026 seconds

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

Study of Road Load of Electric Two-Wheeled Vehicle (전기이륜차의 도로부하 설정에 관한 연구)

  • Kil, Bum-Soo;Kim, Gang-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Recently, the demand of environmentally friendly transportation has increased due to the environmental issues. Electric two-wheeled vehicles do not have the noise pollution nor exhaust gases of vehicles with internal combustion engines. Performance evaluation of an electric two-wheeled vehicle was carried out. A driving test on outdoor roads was performed and a chassis dynamometer was used. The chassis dynamometer simulates the road load of the vehicle. The road load influences the tests using the chassis dynamometer. The differences between the table method and the coasting test for setting the road load was compared and analyzed.

Girder distribution factors for steel bridges subjected to permit truck or super load

  • Tabsh, Sami W.;Mitchell, Muna M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.237-249
    • /
    • 2016
  • There are constraints on truck weight, axle configurations and size imposed by departments of transportation around the globe due to structural capacity limitations of highway pavements and bridges. In spite of that, freight movers demand some vehicles that surpass the maximum size and legal weight limits to use the transportation network. Oversized trucks serve the purpose of spreading the load on the bridge; thus, reducing the load effect on the superstructure. For such vehicles, often a quick structural analysis of the existing bridges along the traveled route is needed to ensure that the structural capacity is not exceeded. For a wide vehicle having wheel gage larger than the standard 1830 mm, the girder distribution factors in the design specifications cannot be directly used to estimate the live load in the supporting girders. In this study, a simple approach that is based on finite element analysis is developed by modifying the AASHTO LRFD's girder distribution factors for slab-on-steel-girder bridges to overcome this problem. The proposed factors allow for determining the oversized vehicle bending moment and shear force effect in the individual girders as a function of the gage width characteristics. Findings of the study showed that the relationship between the girder distribution factor and gage width is more nonlinear in shear than in flexure. The proposed factors yield reasonable results compared with the finite element analysis with adequate level of conservatism.

A Study on Stability Assessment of Vehicle and Track on Transition between Conventional and Zero-Longitudinal Resistance Rail Fastener (일반체결구/활동체결구 접속구간 차량 및 궤도 안정성 평가에 관한 연구)

  • Yang, Sin-Chu;Jang, Seung-Yup;Yoo, Eun;Kim, Jin-Young;Hong, Sung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1078-1083
    • /
    • 2008
  • In this paper, assessed are the stability of vehicle and track according to vertical support stiffness difference on the transition between conventional and zero-longitudinal resistance (ZLR) rail fastener on bridge. For this, the spring constants of rail fastener have been determined according to different load ranges - KTX load (with or without impact factor) and test load of EN standards - from results of laboratory test on rail pad, the stability analysis of vehicle and track has been performed according to numbers or installation length of ZLR fasteners using vertical vehicle-track coupled model to consider train-track interaction. The analysis results reveal that only the wheel load variation slightly exceed the limit value when 2 ZLR fasteners are used with spring constant determined within the EN test load range, but, in all other cases, all evaluation items are satisfied. Thus, it can be said that the stability of vehicle and track will not be degraded by ZLR fastener.

  • PDF

Damage Analysis of Manganese Crossings for Turnout System of Sleeper Floating Tracks on Urban Transit (도시철도 침목플로팅궤도 분기기 망간크로싱의 손상해석)

  • Choi, Jung-Youl;Yoon, Young-Sun;Ahn, Dae-Hee;Han, Jae-Min;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • The turnout system of the sleeper floating tracks (STEDEF) on urban transit is a Anti-vibration track composed of a wooden sleeper embedded in a concrete bed and a sleeper resilience pad under the sleeper. Therefore, deterioration and changes in spring stiffness of the sleeper resilience pad could be cause changes in sleeper support conditions. The damage amount of manganese crossings that occurred during the current service period of about 21 years was investigated to be about 17% of the total amount of crossings, and it was analyzed that the damage amount increased after 15 years of use (accumulated passing tonnage of about 550 million tons). In this study, parameter analysis (wheel position, sleeper support condition, and dynamic wheel load) was performed using a three-dimensional numerical model that simulated real manganese crossing and wheel profile, to analyze the damage type and cause of manganese crossing that occurred in the actual field. As a result of this study, when the voided sleeper occurred in the sleeper around the nose, the stress generated in the crossing nose exceeded the yield strength according to the dynamic wheel load considering the design track impact factor. In addition, the analysis results were evaluated to be in good agreement with the location of damage that occurred in the actual field. Therefore, in order to minimize the damage of the manganese crossing, it is necessary to keep the sleeper support condition around the nose part constant. In addition, by considering the uniformity of the boundary conditions under the sleepers, it was analyzed that it would be advantageous to to replace the sleeper resilience pad together when replacing the damaged manganese crossing.

Design Graphs for Asphalt Concrete Track with Wide Sleepers Using Performance Parameters (성능요소를 반영한 광폭 침목형 아스팔트콘크리트 궤도 설계그래프)

  • Lee, SeongHyeok;Lim, Yujin;Song, Geunwoo;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.331-340
    • /
    • 2016
  • Wheel load, design velocity, traffic amount (MGT), stiffness and thickness of sub-layers of asphalt concrete track are selected as performance design parameters in this study. A pseudo-static wheel load computed considering the dynamic amplification factor (DAF) based on the design velocity of the KTX was applied to the top of asphalt concrete track for full three dimensional structural analysis using the ABAQUS program. Tensile strains at the bottom of the asphalt concrete layer and vertical strains at the top of the subgrade were computed from the structural FEA with different combinations of performance parameter values for one asphalt concrete track section. Utilizing the computed structural analysis results such as the tensile strains and the vertical strains, it was possible to develop design graphs to investigate proper track sections for different combination of the performance parameters including wheel load, design velocity, traffic amount(MGT), stiffness and thickness of asphalt concrete layers for any given design life. By analyzing the proposed design graphs for asphalt concrete track, it was possible to propose simple design tables that can be used by engineers for the effective and fast design of track.

Design of Hybrid Superconductor Bearing Set for a Flywheel System with Vertical Axis (수직축형 플라이휠 시스템을 위한 초전도 하이브리드 베어링의 설계)

  • 이준성;한영희;한상철;성태현;김상준
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.22-28
    • /
    • 2001
  • A vortical axis flywheel system was conceptualized, which uses a hybrid superconductor bearing set to carry the wheel part load. The multiple designs of magnetic bearing and superconductor bearing were analyzed by using conventional numerical magnetostatic analysis method The best medels were selected among four different types of Permanent magnet bearings for upper bearing and two types of superconductor bearing for lower bearing, respectively These results were discussed in regard of application to the flywheel system with a Passive hybrid magnetic bearing set.

  • PDF

Development of a Numerical Analysis Method of Train/Track Interaction for Evaluation of Dynamic Track Design Load (궤도 설계 동하중 산정을 위한 차량/궤도 상호작용 해석기법 개발)

  • 양신추
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1094-1099
    • /
    • 2002
  • In this paper, a numerical method for vehicle-track interaction analysis is developed to evaluate vertical dynamic force subjected to rail surface. A vehicle is modelled by lumped masses system and track by multi layered continuous beam system. The equation of motion of vehicle and track interaction system is derived by considering compatibility condition at the contact points between wheel and rail. The input vibration source is given by the empirical formula of power spectral density of track irregularity, which is suggested by FRA. Using this method, dynamic impact factors with the train speed are evaluated.

  • PDF

Structural Analysis of Underground Parking Garage Under Vehicle Load (지하주차장 차량하중에 따른 구조체의 영향분석)

  • Kim, Young-Jin;Lee, Bum-Sick;Choi, Dong-Sub;Oh, Hyo-Keon;Kang, Chang-Bum
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.22-29
    • /
    • 2013
  • Accumulation of more than 20,000,000 vehicles since the establishment of the quality of life and economic development needs several parking lots and cause crack problem in Korea. Related structures in large cities due to the lack of parking garage attached to secure underground parking structures are actively being built, and the basement parking lot will continue to increase more stories and the trend is expected to be larger. But so far, construction of the underground parking structure is related to a number of problems, including cracks in the structure. Therefore, in this study, repair, reinforcement and a few non-economic losses in the current design criteria are presented. The review of the structure used to current design criteria is to minimize crack and maximize usability.