• Title/Summary/Keyword: Wheel Speed

Search Result 924, Processing Time 0.028 seconds

Design Idea of Suspension for Traction Wheel of Novel High Speed Towing Carriage (초고속선 실험을 위한 신형식 예인전차의 현가장치 설계시안)

  • Koo, Seong-Pil;Kim, Hyochul;Ham, Yeun-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.407-413
    • /
    • 2013
  • In the conventional towing tank, the ordinary towing carriage has a speed barrier which caused not only by the limitation of the length of towing tank but also the limitation of acceleration. Therefore the length of the towing tank should be decided carefully from the planning stage of the towing tank construction. Consequently the acceleration of the towing carriage should be taken less than 0.06g practically to avoid the slip of the wheel on rail. Due to the increasing demand of the high speed experiments on the development of special novel ship, the requirement of the high speed towing carriage is continuously increased recently. When the minimum measuring time of the towing experiment is prescribed as five seconds, the carriage should be accelerated with higher than 0.12 g to get the speed of 18 m/sec even in the towing tank having a length of 400m in length approximately. This means that the requirement of acceleration is bigger than twice of the ordinary practices of carriage acceleration. In such a condition the exerted total power of motor could not converted to traction force for the acceleration of the carriage without slip. To over come these difficulties a pair of horizontal traction wheels are reinforced to each of the ordinary vertical carrier wheel and appropriate suspension system has been devised for the towing tank of super high speed operation. It is believed that the design of novel suspension system adaptable for the high speed acceleration of towing carriage will play a important role as a reference for the remodeling of the towing tank for high speed experiment.

Absolute Vehicle Speed Estimation considering Acceleration Bias and Tire Radius Error (가속도 바이어스와 타이어반경 오차를 고려한 차량절대속도 추정)

  • 황진권;송철기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.234-240
    • /
    • 2002
  • This paper treats the problem of estimating the longitudinal velocity of a braking vehicle using measurements from an accelerometer and wheel speed data from standard anti-lock braking wheel speed sensors. We develop and experimentally test three velocity estimation algorithms of increasing complexity. The algorithm that works the best gives peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

Development of HST electronic control system for combine (II)- Outdoor tests for control Characteristics - (콤바인 HST 전자제어시스템 개발- 제어특성 실외시험 -)

  • Seo, Sin-Won;Huh, Yun-Kun;Lee, Je-Yong;Lee, Chang-Kyu;Bae, Keun-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.121-128
    • /
    • 2011
  • I/An electro-hydraulic transmission having advantages of convenience, safety, simple linking and high power, and an electronic control system were designed and fabricated. In this study, characteristics of the control system were investigated through outdoor tests for evaluation of installation of the system on a combine. Major findings were as followings. 1. Experiment for performance evaluation of the control system was conducted on concrete road. With steering lever in neutral position, driving HST swash plate and left/right wheel speed increased in proportion to driving lever angle. In case of steering control, steering swash plate angle changed in proportion to steering lever angle. This should cause increase in outer wheel speed, but it was observed that HST swash plate was controlled toward neutral to maintain the speed before steering. As a result, speed before steering was maintained despite the change in outer wheel speed by steering HST swash plate angle change. 2. It was observed that the HST system enabled steering with outer wheel maintained at constant speeds while inner wheel speed decreased, which was more stable than conventional mechanical links. In addition, for the selected 5 criteria, experiment showed satisfactory results and it was judged that installation on real vehicle would be feasible. 3. The control system showed response property of appropriate forward/reverse movement and lift/right steering, without causing any problems during experiment on concrete. Result of response property experiment on field operation also showed appropriate control over forward/reverse movement and left/right steering.

The Side-Cut Grinding by the Electrodeposited CBN Wheel of a Hemispheric Type (전착 CBN 반구형 숫돌에 의한 측면 연삭가공)

  • 서영일;김창수;이종찬;정선환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.38-42
    • /
    • 1995
  • In this paper, a theoretical analysis is presented on the mechanics for the side-cut grinding by electrodeposited CBN wheel of a hemispheric type. Each of the grinding force components is calculated by using the geometrical model. It is also presented that experimental results show grinding forces for grinding variable such as wheel speed, feed speed,depth of cut, and grinding wheel positions. The experimental results are found to be in good agreement with those predicted by the analytcal calculation.

  • PDF

A Study on the dynamic behavior of rail due to dipped joints (레일이음매의 동적거동에 대한 연구)

  • Kang, Yun-Suk;Yang, Shin-Chu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.328-333
    • /
    • 2002
  • When vehicle travelling along the track which has irregularity such as vertical profile, dynamic forces arise at the Wheel/Rail contact patch by wheel/rail interaction. In particular short wavelength irregularities on dipped joint and small stiffness of connecting rail bring about intense wheel/rail dynamic effects at higher speed. In the paper, a new model for dipped joint rail is developed to study dynamic behavior of track. A cusp behavior on dipped joint was defined by its amplitude and decay factor, which was presented by FRA track classes. The result of case study are presented, which show wheel rail contact force in each track classes, train operation speed and bending flexible rigidity ratio of fishplates which are connecting the rail.

  • PDF

퍼지추론을 이용한 연삭가공조건 설정용 전문가 시스템의 개발

  • 신상룡;김남경;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.121-125
    • /
    • 1992
  • Grinding is considered as a very effective machining technology to attain the good surface quality of a components. However, the grinding operation still needs the skill and experience of an operator because of a lack of scientific and engineering principles. Therefore, recent development focus on expert systems which deal with domain specific knowledge in order to solve this problem. This paper describes an expert system for selecting the optimism grinding wheel by using the fuzzy reasoning and operation conditions in grinding. By the system unskilled workers will be able to make use of the knowledge and experience of skilled workers. The system is consist of programs that, (1) selection of the best wheel form among avairable wheel by using fuzzy reasoning, (2) determine wheel depth of cut, feed and wheel speed for grinding, work speed, and dressing condition. The developed system perform in using the CLIPS as a software tool and run under the IBM PC/AT as a hardware tool.

Mechanics of the Grinding by Hemispheric Type Electroplated CBN Wheel (반구형 전착 CBN 휠에 의한 연삭가공의 연삭력 해석)

  • Seo, Young-Il;Choi, Hwan;Lee, Jong-Chan;Jung, Sun-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.153-158
    • /
    • 1998
  • In this paper, a theoretical analysis is presented on the mechanics of the grinding by hemispheric type electroplated CBN wheel. The grinding forces acting on a single grain were calculated from its geometry by assuming the abrasive grain is spherical. Then. the total grinding forces were obtained by estimating the number of acting abrasive grains and the area of contact. The model includes the grinding variables such as wheel speed. feed speed. depth of cut, and grinding wheel positions. Experiments were also carried out to compare with the analytical results. The experimental results were found to be in good agreement with the analytical ones.

  • PDF

A Study on the Parameters for Hunting of the Rolling-stock (철도차량 사행동에 미치는 인자에 관한 연구)

  • Hur, Hyun-Moo;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.98-103
    • /
    • 2006
  • The hunting is the natural characteristics of the railway wheelset which is originated from the contact between the conical type wheel profile and rail. The critical speed of rolling-stock is called when the hunting is occurred, and it is closely connected with vehicle stability. The parameters which influence the hunting motion are like wheel profile, primary spring property and wheelset dimension, etc. The studies for these parameters are reported diversely. In this study, we aim to analyze the influence of parameters on hunting with the change of wheel profile produced by wheel wear and material property produce by aging of primary spring. For this, we made a dynamic model for wheelset and vehicle. Using these models, we analyzed the critical speed with the variations of the parameters like as wheel profile and primary spring property and we show the results.

  • PDF

Analysis of Powder Characteristics of Cheese by Using RSM in Spray Dryer with Rotating Wheel Atomizer (Wheel형 분무건조기에 반응표면법에 의한 치즈 분말의 특성 해석)

  • Kang, An-Soo;Yeo, Kyung-Mok;Kim, Yong-Ryeol;Kim, Bok Nam;An, Hyung-Hwan;Lee, Han-Seob
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1147-1155
    • /
    • 1996
  • In the spray drying with rotating wheel atomizer of cheese powder, the relationships among variables were analyzed with Response Surface Methodology in which several independent variables such as total solid content, wheel rotation speed, and outlet temperature influenced dependent variables such as particle diameter, moisture content, bulk density, and viscosity of suspended liquid. Significance and correlation were tested according to central composite design. As a results of analyzing the correlations between independent and dependent variables, particle diameter and moisture content of cheese powder were decreased with increasing wheel rotation speed, and bulk density was decreased with increasing outlet temperature. Viscosity of suspended liquid were increased with increasing wheel rotation speed and total moisture content. In correlation among dependent variables, moisture content was proportional to bulk density, and particle diameter was inversly proportional to moisture content and bulk density.

  • PDF