• Title/Summary/Keyword: Wheel Plate

Search Result 108, Processing Time 0.03 seconds

Specific Growth Rates of Microalgae in Different Types of Model Photobioreactors (모형 배양조 형태에 따른 단세포 조류의 비증식속도)

  • KWAK Jung-Ki;KIM Hyun-Ju;LEE Ji-Hyun;SHIN Ga-Hee;CHO Man-Gi;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.477-482
    • /
    • 1998
  • In the aquaculture industry, a photobioreactor (Pbr) with high productivity is a prerequisite for mass production of Chlorella sp., a feeding fry for Rotifer (Brachinous plicatilis). To enhance the productivity of Chlorella sp., model Pbrs such as Cylinder type, Spherical surface type, Half-spherical surface type, Plate type, Raceway pond type and Water-wheel type Pbr with different values of surface area exposed to light/culture volume (S/V) were manufactured, and the maximum specific growth rate (${\mu}_{max}$) and productivity of Chlorella vulgaris 211-11b at $25^{\circ}C$, pH 7.0 and 12,000 lux were compared each other. The ${\mu}_{max}$ and productivity were not proportional to S/V. Among the 6 model Pbrs, Half-spherical surface type Pbr showed the highest ${\mu}_{max}$ and productivity as 2.206 ($day^{-1}$) and 0.247($g^{{\ell}-1}day^{-1}$).

  • PDF

Development of a New Pressure-Sinkage Model for Rover Wheel-Lunar Soil Interaction based on Dimensional Analysis and Bevameter Tests

  • Lim, Yujin;Le, Viet Dinh;Bahati, Pierre Anthyme
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.237-250
    • /
    • 2021
  • A rover is a planetary surface exploration device designed to move across the ground on a planet or a planetary-like body. Exploration rovers are increasingly becoming a vital part of the search for scientific evidence and discoveries on a planetary satellite of the Sun, such as the Moon or Mars. Reliable behavior and predictable locomotion of a rover is important. Understanding soil behavior and its interaction with rover wheels-the terramechanics-is of great importance in rover exploration performance. Up to now, many researchers have adopted Bekker's semiempirical model to predict rover wheelsoil interaction, which is based on the assumption that soil is deformable when a pressure is applied to it. Despite this basic assumption of the model, the pressure-sinkage relation is not fully understood, and it continues to present challenges for rover designers. This article presents a new pressure-sinkage model based on dimensional analysis (DA) and results of bevameter tests. DA was applied to the test results in order to propose a new pressure-sinkage model by reducing physical quantitative parameters. As part of the work, a new bevameter was designed and built so that it could be successfully used to obtain a proper pressure-sinkage relation of Korean Lunar Soil Simulant (KLS-1). The new pressure-sinkage model was constructed by using three different sizes of flat plate diameters of the bevameter. The newly proposed model was compared successfully with other models for validation purposes.

Experimental Study on the Determination of Slope and Height of Curbs Considering the VRUs (교통약자를 고려한 보도의 경사도와 높이 결정을 위한 실험연구)

  • Kim, Hyunjin;Lim, Joonbeom;Choe, Byongho;Oh, Cheol;Kang, Inhyeng
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • PURPOSES : As the population of the mobility handicapped, who are classified as the disabled, the elderly, pregnant women, children, etc., has increased, the voices for guaranteeing their rights have been increasing as well. Thus, the design manuals for roads and sidewalks for the mobility handicapped were developed by the local government, such as the Ministry of Land, Transport, and Tourism, in Seoul City. However, according to the 2013 survey results of the Seoul Metropolitan City, the mobility handicapped still feel uncomfortable with the sidewalks, and particularly request for the improvement of the step and slope of the sidewalk curb. Therefore, in this study, we conducted an empirical experimental study to determine the slope of the sidewalk curb and height of the steps considering the mobility handicapped and analyzed whether there is a statistically significant difference. METHODS : The methodology of this study is an empirical experimental one. In the study, five non-disabled people, 10 wheelchair users, and 10 eye patch and stick users walked about 2-3 min on the sidewalk plates of the sloped type (0%, 5%, 6.3%, 8.3%) and stepped type (0 cm, 1 cm, 3 cm, 6 cm), and their human physiological responses, such as the skin temperature, volume of perspiration on forehead and chest, and heart rate, were measured and recorded. After combining the data, we conducted a nonparametric test, ANOVA, or t-test to determine whether there was a statistically significant difference according to each slope and step type. RESULTS : It was found that for the non-disabled, there was no significant difference in human physiological responses according to the slope and steps of the sidewalk. It can be said that the non-disabled do not feel much physiological discomfort while walking. In the case of the sloped sidewalk plate, the heart rate of the wheel chair users increased when the slope was 6.3%. In the case of the eye patch and stick users, the volume of perspiration on the chest increased at a slope of 5.0%. In general, it is judged that a sidewalk with a slope that is less than 5% does not cause a change in the physiological response. In the case of a stepped sidewalk plate, when 0 cm, 1 cm, and 3 cm were compared for wheelchair users, the amount of forehead perspiration increased from 1 cm. Meanwhile, in the case of the eye patch and stick users, when 0 cm and 6 cm were compared, the amount of perspiration on the forehead and chest as well as the heart rate all increased at 6 cm. Taken together, in the case of wheelchair users, a difference was shown when the height of the step of the sidewalk plate was 1 cm, suggesting that installing it at 0 cm does not cause any physiological discomfort. Moreover, in the case of the eye patch and stick users, when comparing only 0 cm and 6 cm, 0 cm was considered to be suitable, as there was a difference in physiological response at 6 cm. CONCLUSIONS : In this study, we set the human physiological responses such as chest skin temperature, amount of perspiration, and heart rate as evaluation items, and our study was considered to be a meaningful experiment that targeted wheelchair users as well as eye patch and stick users. The validity of the evaluation items was confirmed, as the results of human physiological responses were significant. As for the sidewalk design, according to the experiment result, it is considered that differential application should be implemented according to the type of mobility handicap, rather than uniformly applying a sidewalk step of 2 cm and sidewalk slope of 1/25, which are the current legal standards.

Investigation of Stiffness Characteristics of Subgrade Soils under Tracks Based on Stress and Strain Levels (응력 및 변형률 수준을 고려한 궤도 흙노반의 변형계수 특성 분석)

  • Lim, Yujin;Kim, DaeSung;Cho, Hojin;Sagong, Myoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.386-393
    • /
    • 2013
  • In this study, the so-called repeated plate load bearing test (RPBT) used to get $E_{v2}$ values in order to check the degree of compaction of subgrade, and to get design parameters for determining the thickness of the trackbed foundation, is investigated. The test procedure of the RPBT method is scrutinized in detail. $E_{v2}$ values obtained from the field were verified in order to check the reliability of the test data. The $E_{v2}$ values obtained from high-speed rail construction sites were compared to converted modulus values obtained from resonant column (RC) test results. For these tests, medium-size samples composed of the same soils from the field were used after analyzing stress and strain levels existing in the soil below the repeated loading plates. Finite element analyses, using the PLAXIS and ABAQUS programs, were performed in order to investigate the impact of the strain influence coefficient. This was done by getting newly computed $I_z$ to get the precise strain level predicted on the subgrade surface in the full track structure; under wheel loading. It was verified that it is necessary to use precise loading steps to construct nonlinear load-settlement curves from RPBT in order to get correct $E_{v2}$ values at the proper strain levels.

Analysis of Permanent Deformation under Repetitive Load Based on Degraded Secant Modulus (할선탄성계수를 이용한 반복하중 하 지반의 영구변형 해석)

  • Ahn, Jaehun;Oh, Jeongho;Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.15-21
    • /
    • 2013
  • The analysis of long-term performance of pavement sections under wheel loads is normally conducted in two separated steps. First the resilient behavior of the pavement is calculated assuming the pavement is a layered or discrete elastic medium, and then the permanent deformation is evaluated based on empirical permanent displacement equations. Material properties required in both steps can be obtained from cyclic triaxial tests, in other words, resilient and permanent deformation tests. While this analytical approach is simple and convenient, it does not consider the modulus degradation caused by cyclic loads, and some types of reinforcements such as geosynthetic cannot be modeled in this type of analysis. A model for degraded secant modulus is proposed and suggested to be used for the analysis of permanent behavior of unpaved roadway sections. The parameter for suggested model can be obtained from cyclic triaxial tests, regular practice in pavement engineering. Examples to estimate the model parameters are presented based on both laboratory permanent deformation test and large-scale plate load test.

Effects of Soil Pysical Properties on Workability of Agricultural Machineries in Paddy Field (논토양(土壤)의 물리성(物理性)이 농기계(農機械) 작업능률(作業能率)에 미치는 영향(影響))

  • Jo, In-Sang;Kim, Lee-Yul;Cho, Yeong-Kil;Im, Jeong-Nam;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 1984
  • This study was conducted to find out the effects of soil physical properties on workability of farm machines in the paddy fields. Various soil physical properties, workability of cultivator and tractor were investigated at three different textured soils and three levels of soil moisture conditions. The results are summarized as follows: 1. Soil strength, shear and friction resistance, plate sinkage, wheel and footprint sinkage, and slippage were greatly affected by the soil texture and moisture conditions, and the workabilities were changed by the soil physical properties. 2. Cultivator workability were high values at the range of soil shear resistance $200-450g/cm^2$, and cultivator or tractor working was difficult at below $200g/cm^2$ of the shear resistance. 3. The favorable range of soil strength for tractor working was $8-12kg/cm^2$, and $6-10kg/cm^2$ for cultivator. 4. Footprint sinkage was closely related to the values obtained by testers. It's optimum range for cultivator was 1-2cm, and tractor workability was increased by decreasing the footprint sinkage.

  • PDF

A STUDY ON THE ARMILLARY SPHERE OF TONGCHEON-UI DESCRIBED BY HONG DAE-YONG (홍대용 통천의의 혼천의 연구)

  • MIHN, BYEONG-HEE;YUN, YONG-HYUN;KIM, SANG HYUK;KI, HO CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.79-95
    • /
    • 2021
  • This study aims to develop a restoration model of an armillary sphere of Tongcheon-ui (Pan-celestial Armillary Sphere) by referring to the records of Damheonseo (Hong Dae-Yong Anthology) and the artifact of an armillary sphere in the Korean Christian Museum of Soongsil University. Between 1760 and 1762, Hong, Dae-Yong (1731-1783) built Tongcheon-ui, with Na, Kyung-Jeok (1690-1762) designing the basic structure and Ann, Cheo-In (1710-1787) completing the assembly. The model in this study is a spherical body with a diameter of 510 mm. Tongcheon-ui operates the armillary sphere by transmitting the rotational power from the lantern clock. The armillary sphere is constructed in the fashion of a two-layer sphere: the outer one is Yukhab-ui that is fixed; and the inner one, Samsin-ui, is rotated around the polar axis. In the equatorial ring possessed by Samsin-ui, an ecliptic ring and a lunar-path ring are successively fixed and are tilted by 23.5° and 28.5° over the equatorial ring, respectively. A solar miniature attached to a 365-toothed inner gear on the ecliptic ring reproduces the annual motion of the Sun. A lunar miniature installed on a 114-toothed inner gear of the lunar-path ring can also replay the moon's orbital motion and phase change. By the set of 'a ratchet gear, a shaft and a spur gear' installed in the solstice-colure double-ring, the inner gears in the ecliptic ring and lunar-path ring can be rotated in the opposite direction to the rotation of Samsin-ui and then the solar and lunar miniatures can simulate their revolution over the period of a year and a month, respectively. In order to indicate the change of the moon phases, 27 pins were arranged in a uniform circle around the lunar-path ring, and the 29-toothed wheel is fixed under the solar miniature. At the center of the armillary sphere, an earth plate representing a world map is fixed horizontally. Tongcheon-ui is the armillary sphere clock developed by Confucian scholars in the late Joseon Dynasty, and the technical level at which astronomical clocks could be produced at the time is of a high standard.

Attack Capability Analysis for Securing Self-Survival of Air Defense Weapons (대공방어무기의 자기생존성 확보를 위한 공격능력분석)

  • Kim, Sea Ill;Shin, Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.3
    • /
    • pp.11-17
    • /
    • 2021
  • The 30mm anti-aircraft gun has been developed with various types of weapon systems such as protective, protective complex, and wheel-type anti-aircraft artillery. The role of this anti-aircraft gun is an important anti-aircraft weapon in charge of air defense. Anti-aircraft weapons are tasked with defending the airspace from aircraft attacks. In particular, anti-aircraft weapons are organized in combination with mechanized units. And anti-aircraft weapons are prone to attack by enemies because they operate on the front lines of the battlefield. The enemy is expected to attack our troops by covering up or concealing as much as possible in order to increase their viability. Therefore, this study analyzed whether our 30mm anti-aircraft bullets could subdue the enemy in cover. This study analyzed the performance of 30mm anti-aircraft bullets using the M&S technique. For this study, live shooting and simulation method by M&S were used for the experiment. In this study, steel plate and plywood were used for the live shooting experiment. In addition, in the simulation process through M&S, this study used the PRODAS model, AUTODYN model, and Split-x model to analyze the trajectory, penetration, and fragmentation capability of 30mm anti-aircraft bullets. According to the experimental results, it has been proven that 30mm anti-aircraft bullets can destroy enemy armored vehicles. 30mm anti-aircraft bullets succeeded in quickly subduing enemies concealed in general buildings or forests. In this way, it was possible to minimize damage to allies in advance.